- 1.
Wu, Y.; Zhu, L.; Zhang, Y.; Xu, W. Multidimensional Applications and Challenges of Riboswitches in Biosensing and Biotherapy. Small 2024, 20, e2304852.
https://doi.org/10.1002/smll.202304852.
- 2.
- 3.
Yu, A.M.; Choi, Y.H.; Tu, M.J. RNA Drugs and RNA Targets for Small Molecules: Principles, Progress, and Challenges. Pharmacol. Rev. 2020, 72, 862–898.
https://doi.org/10.1124/pr.120.019554.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
Winkler, W.; Nahvi, A.; Breaker, R.R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 2002, 419, 952–956.
https://doi.org/10.1038/nature01145.
- 10.
Winkler, W.C.; Cohen-Chalamish, S.; Breaker, R.R. An mRNA structure that controls gene expression by binding FMN. Proc. Natl. Acad. Sci. USA 2002, 99, 15908–15913.
https://doi.org/10.1073/pnas.212628899.
- 11.
- 12.
Weigand, J.E.; Suess, B. Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res. 2007, 35, 4179–4185.
- 13.
Wachter, A. Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 2007, 19, 3437–3450.
- 14.
Mellin, J.R.; Tiensuu, T.; Becavin, C.; Gouin, E.; Johansson, J.; Cossart, P. A riboswitch-regulated antisense RNA in Listeria monocytogenes. Proc. Natl. Acad. Sci. USA 2013, 110, 13132–13137.
https://doi.org/10.1073/pnas.1304795110.
- 15.
Winkler, W.C.; Nahvi, A.; Roth, A.; Collins, J.A.; Breaker, R.R. Control of gene expression by a natural metabolite-responsive ribozyme. Nature 2004, 428, 281–286.
https://doi.org/10.1038/nature02362.
- 16.
Collins, J.A.; Irnov, I.; Baker, S.; Winkler, W.C. Mechanism of mRNA destabilization by the glmS ribozyme. Genes. Dev. 2007, 21, 3356–3368.
https://doi.org/10.1101/gad.1605307.
- 17.
- 18.
- 19.
- 20.
- 21.
Sudarsan, N.; Hammond, M.C.; Block, K.F.; Welz, R.; Barrick, J.E.; Roth, A.; Breaker, R.R. Tandem riboswitch architectures exhibit complex gene control functions. Science 2006, 314, 300–304.
https://doi.org/10.1126/science.1130716.
- 22.
Lee, E.R.; Baker, J.L.; Weinberg, Z.; Sudarsan, N.; Breaker, R.R. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 2010, 329, 845–848.
https://doi.org/10.1126/science.1190713.
- 23.
Sherlock, M.E.; Sudarsan, N.; Stav, S.; Breaker, R.R. Tandem riboswitches form a natural Boolean logic gate to control purine metabolism in bacteria. Elife 2018, 7, e33908.
https://doi.org/10.7554/eLife.33908.
- 24.
Sherlock, M.E.; Higgs, G.; Yu, D.; Widner, D.L.; White, N.A.; Sudarsan, N.; Sadeeshkumar, H.; Perkins, K.R.; Mirihana Arachchilage, G.; Malkowski, S.N.; et al. Architectures and complex functions of tandem riboswitches. RNA Biol. 2022, 19, 1059–1076.
https://doi.org/10.1080/15476286.2022.2119017.
- 25.
Cheng, S.; Wang, F.; Qian, W. Identification of cyclic di-GMP protein receptors: High-throughput screening strategies and experimental verification. Sheng Wu Gong. Cheng Xue Bao 2017, 33, 1376–1389.
https://doi.org/10.13345/j.cjb.170175.
- 26.
- 27.
- 28.
- 29.
Strobel, B.; Sporing, M.; Klein, H.; Blazevic, D.; Rust, W.; Sayols, S.; Hartig, J.S.; Kreuz, S. High-throughput identification of synthetic riboswitches by barcode-free amplicon-sequencing in human cells. Nat. Commun. 2020, 11, 714.
https://doi.org/10.1038/s41467-020-14491-x.
- 30.
Xiang, J.S.; Kaplan, M.; Dykstra, P.; Hinks, M.; McKeague, M.; Smolke, C.D. Massively parallel RNA device engineering in mammalian cells with RNA-Seq. Nat. Commun. 2019, 10, 4327.
https://doi.org/10.1038/s41467-019-12334-y.
- 31.
- 32.
- 33.
- 34.
Chen, Y.Y.; Jensen, M.C.; Smolke, C.D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc. Natl. Acad. Sci. USA 2010, 107, 8531–8536.
https://doi.org/10.1073/pnas.1001721107.
- 35.
- 36.
Zhong, G.; Wang, H.; Bailey, C.C.; Gao, G.; Farzan, M. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells. Elife 2016, 5, e18858.
https://doi.org/10.7554/eLife.18858.
- 37.
Rehm, C.; Klauser, B.; Hartig, J.S. Engineering aptazyme switches for conditional gene expression in mammalian cells utilizing an in vivo screening approach. Methods Mol. Biol. 2015, 1316, 127–140.
https://doi.org/10.1007/978-1-4939-2730-2_11.
- 38.
Rehm, C.; Klauser, B.; Finke, M.; Hartig, J.S. Engineering Aptazyme Switches for Conditional Gene Expression in Mammalian Cells Utilizing an In Vivo Screening Approach. Methods Mol. Biol. 2021, 2323, 199–212.
https://doi.org/10.1007/978-1-0716-1499-0_14.
- 39.
Beilstein, K.; Wittmann, A.; Grez, M.; Suess, B. Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes. ACS Synth. Biol. 2015, 4, 526–534.
https://doi.org/10.1021/sb500270h.
- 40.
- 41.
- 42.
Latta-Mahieu, M.; Rolland, M.; Caillet, C.; Wang, M.; Kennel, P.; Mahfouz, I.; Loquet, I.; Dedieu, J.F.; Mahfoudi, A.; Trannoy, E.; et al. Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Hum. Gene Ther. 2002, 13, 1611–1620.
https://doi.org/10.1089/10430340260201707.
- 43.
Favre, D.; Blouin, V.; Provost, N.; Spisek, R.; Porrot, F.; Bohl, D.; Marme, F.; Cherel, Y.; Salvetti, A.; Hurtrel, B.; et al. Lack of an immune response against the tetracycline-dependent transactivator correlates with long-term doxycycline-regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno-associated virus. J. Virol. 2002, 76, 11605–11611.
https://doi.org/10.1128/jvi.76.22.11605-11611.2002.
- 44.
Guiner, C.; Stieger, K.; Snyder, R.O.; Rolling, F.; Moullier, P. Immune responses to gene product of inducible promoters. Curr. Gene Ther. 2007, 7, 334–346.
- 45.
Mays, L.E.; Wilson, J.M. The complex and evolving story of T cell activation to AAV vector-encoded transgene products. Mol. Ther. 2011, 19, 16–27.
- 46.
Gao, G.; Wang, Q.; Calcedo, R.; Mays, L.; Bell, P.; Wang, L.; Vandenberghe, L.H.; Grant, R.; Sanmiguel, J.; Furth, E.E.; et al. Adeno-associated virus-mediated gene transfer to nonhuman primate liver can elicit destructive transgene-specific T cell responses. Hum. Gene Ther. 2009, 20, 930–942.
https://doi.org/10.1089/hum.2009.060.
- 47.
- 48.
Tabuchi, T.; Yokobayashi, Y. High-throughput screening of cell-free riboswitches by fluorescence-activated droplet sorting. Nucleic Acids Res. 2022, 50, 3535–3550.
https://doi.org/10.1093/nar/gkac152.
- 49.
Townshend, B.; Kennedy, A.B.; Xiang, J.S.; Smolke, C.D. High-throughput cellular RNA device engineering. Nat. Methods 2015, 12, 989–994.
https://doi.org/10.1038/nmeth.3486.
- 50.
- 51.
- 52.
Antunes, D.; Jorge, N.A.N.; Caffarena, E.R.; Passetti, F. Using RNA Sequence and Structure for the Prediction of Riboswitch Aptamer: A Comprehensive Review of Available Software and Tools. Front. Genet. 2017, 8, 231.
https://doi.org/10.3389/fgene.2017.00231.
- 53.
Schwalbe, H.; Buck, J.; Fürtig, B.; Noeske, J.; Wöhnert, J. Structures of RNA switches: Insight into molecular recognition and tertiary structure. Angew. Chem. Int. Ed. Engl. 2007, 46, 1212–1219.
https://doi.org/10.1002/anie.200604163.
- 54.
Sato, K.; Hamada, M. Recent trends in RNA informatics: A review of machine learning and deep learning for RNA secondary structure prediction and RNA drug discovery. Brief. Bioinform. 2023, 24.
https://doi.org/10.1093/bib/bbad186.
- 55.
- 56.
Weickhmann, A.K.; Keller, H.; Wurm, J.P.; Strebitzer, E.; Juen, M.A.; Kremser, J.; Weinberg, Z.; Kreutz, C.; Duchardt-Ferner, E.; Wöhnert, J. The structure of the SAM/SAH-binding riboswitch. Nucleic Acids Res. 2019, 47, 2654–2665.
https://doi.org/10.1093/nar/gky1283.
- 57.
- 58.
Bu, F.; Lin, X.; Liao, W.; Lu, Z.; He, Y.; Luo, Y.; Peng, X.; Li, M.; Huang, Y.; Chen, X.; et al. Ribocentre-switch: A database of riboswitches. Nucleic Acids Res. 2024, 52, D265-d272,.
https://doi.org/10.1093/nar/gkad891.
- 59.
- 60.
Serganov, A.; Huang, L.L.; Patel, D.J. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 2008, 455, 1263-U1276,.
https://doi.org/10.1038/nature07326.
- 61.
- 62.
Smith, K.D.; Lipchock, S.V.; Ames, T.D.; Wang, J.M.; Breaker, R.R.; Strobel, S.A. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat. Struct. Mol. Biol. 2009, 16, 1218-U1227,.
https://doi.org/10.1038/nsmb.1702.
- 63.
Lu, C.; Smith, A.M.; Fuchs, R.T.; Ding, F.; Rajashankar, K.; Henkin, T.M.; Ke, A. Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat. Struct. Mol. Biol. 2008, 15, 1076–1083.
https://doi.org/10.1038/nsmb.1494.
- 64.
- 65.
Zhang, K.; Li, S.; Kappel, K.; Pintilie, G.; Su, Z.; Mou, T.C.; Schmid, M.F.; Das, R.; Chiu, W. Cryo-EM structure of a 40 kDa SAM-IV riboswitch RNA at 3.7 Å resolution. Nat. Commun. 2019, 10, 5511.
https://doi.org/10.1038/s41467-019-13494-7.
- 66.
Trausch, J.J.; Xu, Z.J.; Edwards, A.L.; Reyes, F.E.; Ross, P.E.; Knight, R.; Batey, R.T. Structural basis for diversity in the SAM clan of riboswitches. Proc. Natl. Acad. Sci. USA 2014, 111, 6624–6629.
https://doi.org/10.1073/pnas.1312918111.
- 67.
Sun, A.; Gasser, C.; Li, F.; Chen, H.; Mair, S.; Krasheninina, O.; Micura, R.; Ren, A. SAM-VI riboswitch structure and signature for ligand discrimination. Nat. Commun. 2019, 10, 5728.
https://doi.org/10.1038/s41467-019-13600-9.
- 68.
Edwards, A.L.; Reyes, F.E.; Héroux, A.; Batey, R.T. Structural basis for recognition of S-adenosylhomocysteine by riboswitches. Rna 2010, 16, 2144–2155.
https://doi.org/10.1261/rna.2341610.
- 69.
Zheng, L.; Song, Q.; Xu, X.; Shen, X.; Li, C.; Li, H.; Chen, H.; Ren, A. Structure-based insights into recognition and regulation of SAM-sensing riboswitches. Sci. China Life Sci. 2023, 66, 31–50.
https://doi.org/10.1007/s11427-022-2188-7.
- 70.
Aboul-ela, F.; Huang, W.; Elrahman, M.A.; Boyapati, V.; Li, P. Linking aptamer-ligand binding and expression platform folding in riboswitches: Prospects for mechanistic modeling and design. Wires RNA 2015, 6, 631–650.
https://doi.org/10.1002/wrna.1300.
- 71.
de la Pena, M.; Dufour, D.; Gallego, J. Three-way RNA junctions with remote tertiary contacts: A recurrent and highly versatile fold. RNA 2009, 15, 1949–1964.
https://doi.org/10.1261/rna.1889509.
- 72.
Porter, E.B.; Marcano-Velázquez, J.G.; Batey, R.T. The purine riboswitch as a model system for exploring RNA biology and chemistry. Bba-Gene Regul. Mech. 2014, 1839, 919–930.
https://doi.org/10.1016/j.bbagrm.2014.02.014.
- 73.
Stagno, J.R.; Bhandari, Y.R.; Conrad, C.E.; Liu, Y.; Wang, Y.X. Real-time crystallographic studies of the adenine riboswitch using an X-ray free-electron laser. Febs. J. 2017, 284, 3374–3380.
https://doi.org/10.1111/febs.14110.
- 74.
Stagno, J.R.; Liu, Y.; Bhandari, Y.R.; Conrad, C.E.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D.R.; et al. Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography. Nature 2017, 541, 242.
https://doi.org/10.1038/nature20599.
- 75.
Serganov, A.; Yuan, Y.R.; Pikovskaya, O.; Polonskaia, A.; Malinina, L.; Phan, A.T.; Hobartner, C.; Micura, R.; Breaker, R.R.; Patel, D.J. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 2004, 11, 1729–1741.
https://doi.org/10.1016/j.chembiol.2004.11.018.
- 76.
- 77.
Serganov, A.; Huang, L.L.; Patel, D.J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 2009, 458, 233–237.
https://doi.org/10.1038/nature07642.
- 78.
Vicens, Q.; Mondragón, E.; Batey, R.T. Molecular sensing by the aptamer domain of the FMN riboswitch: A general model for ligand binding by conformational selection. Nucleic Acids Res. 2011, 39, 8586–8598.
https://doi.org/10.1093/nar/gkr565.
- 79.
Wilt, H.M.; Yu, P.; Tan, K.; Wang, Y.X.; Stagno, J.R. FMN riboswitch aptamer symmetry facilitates conformational switching through mutually exclusive coaxial stacking configurations. J. Struct. Biol. X 2020, 4, 100035.
https://doi.org/10.1016/j.yjsbx.2020.100035.
- 80.
Ren, A.M.; Xue, Y.; Peselis, A.; Serganov, A.; Al-Hashimi, H.M.; Patel, D.J. Structural and Dynamic Basis for Low-Affinity, High-Selectivity Binding of L-Glutamine by the Glutamine Riboswitch. Cell Rep. 2015, 13, 1800–1813.
https://doi.org/10.1016/j.celrep.2015.10.062.
- 81.
Trausch, J.J.; Batey, R.T. A Disconnect between High-Affinity Binding and Efficient Regulation by Antifolates and Purines in the Tetrahydrofolate Riboswitch. Chem. Biol. 2014, 21, 205–216.
https://doi.org/10.1016/j.chembiol.2013.11.012.
- 82.
Trausch, J.J.; Ceres, P.; Reyes, F.E.; Batey, R.T. The Structure of a Tetrahydrofolate-Sensing Riboswitch Reveals Two Ligand Binding Sites in a Single Aptamer. Structure 2011, 19, 1413–1423.
https://doi.org/10.1016/j.str.2011.06.019.
- 83.
Huang, L.L.; Ishibe-Murakami, S.; Patel, D.J.; Serganov, A. Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch. Proc. Natl. Acad. Sci. USA 2011, 108, 14801–14806.
https://doi.org/10.1073/pnas.1111701108.
- 84.
Wilt, H.M.; Yu, P.; Tan, K.; Wang, Y.X.; Stagno, J.R. Tying the knot in the tetrahydrofolate (THF) riboswitch: A molecular basis for gene regulation. J. Struct. Biol. 2021, 213, 107703.
https://doi.org/10.1016/j.jsb.2021.107703.
- 85.
Kubodera, T.; Watanabe, M.; Yoshiuchi, K.; Yamashita, N.; Nishimura, A.; Nakai, S.; Gomi, K.; Hanamoto, H. Thiamine-regulated gene expression of requires splicing of the intron containing a riboswitch-like domain in the 5′-UTR. Febs Lett. 2003, 555, 516–520.
https://doi.org/10.1016/S0014-5793(03)01335-8.
- 86.
- 87.
Serganov, A.; Polonskaia, A.; Phan, A.T.; Breaker, R.R.; Patel, D.J. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 2006, 441, 1167–1171.
https://doi.org/10.1038/nature04740.
- 88.
Thore, S.; Leibundgut, M.; Ban, N.N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 2006, 312, 1208–1211.
https://doi.org/10.1126/science.1128451.
- 89.
Lee, H.K.; Lee, Y.T.; Fan, L.; Wilt, H.M.; Conrad, C.E.; Yu, P.; Zhang, J.; Shi, G.; Ji, X.; Wang, Y.X.; et al. Crystal structure of Escherichia coli thiamine pyrophosphate-sensing riboswitch in the apo state. Structure 2023, 31, 848-859.e843,.
https://doi.org/10.1016/j.str.2023.05.003.
- 90.
- 91.
Boussebayle, A.; Torka, D.; Ollivaud, S.; Braun, J.; Bofill-Bosch, C.; Dombrowski, M.; Groher, F.; Hamacher, K.; Suess, B. Next-level riboswitch development-implementation of Capture-SELEX facilitates identification of a new synthetic riboswitch. Nucleic Acids Res. 2019, 47, 4883–4895.
https://doi.org/10.1093/nar/gkz216.
- 92.
Dunn, M.R.; Jimenez, R.M.; Chaput, J.C. Analysis of aptamer discovery and technology. Nat. Rev. Chem. 2017, 1, 76.
- 93.
Nomura, Y.; Chien, H.C.; Yokobayashi, Y. Direct screening for ribozyme activity in mammalian cells. Chem. Commun. 2017, 53, 12540–12543.
https://doi.org/10.1039/c7cc07815c.
- 94.
Espah Borujeni, A.; Mishler, D.M.; Wang, J.; Huso, W.; Salis, H.M. Automated physics-based design of synthetic riboswitches from diverse RNA aptamers. Nucleic Acids Res. 2016, 44, 1–13.
https://doi.org/10.1093/nar/gkv1289.
- 95.
Domin, G.; Findeiss, S.; Wachsmuth, M.; Will, S.; Stadler, P.F.; Morl, M. Applicability of a computational design approach for synthetic riboswitches. Nucleic Acids Res. 2017, 45, 4108–4119.
https://doi.org/10.1093/nar/gkw1267.
- 96.
Wittmann, A.; Suess, B. Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast. Mol. Biosyst. 2011, 7, 2419–2427.
https://doi.org/10.1039/c1mb05070b.
- 97.
- 98.
Davidson, M.E.; Harbaugh, S.V.; Chushak, Y.G.; Stone, M.O.; Kelley-Loughnane, N. Development of a 2,4-dinitrotoluene-responsive synthetic riboswitch in E. coli cells. ACS Chem. Biol. 2013, 8, 234–241.
https://doi.org/10.1021/cb300274g.
- 99.
- 100.
Xiu, Y.; Jang, S.; Jones, J.A.; Zill, N.A.; Linhardt, R.J.; Yuan, Q.; Jung, G.Y.; Koffas, M.A.G. Naringenin-responsive riboswitch-based fluorescent biosensor module for Escherichia coli co-cultures. Biotechnol. Bioeng. 2017, 114, 2235–2244.
https://doi.org/10.1002/bit.26340.
- 101.
McKeague, M.; Wong, R.S.; Smolke, C.D. Opportunities in the design and application of RNA for gene expression control. Nucleic Acids Res. 2016, 44, 2987–2999.
https://doi.org/10.1093/nar/gkw151.
- 102.
Yen, L.; Svendsen, J.; Lee, J.S.; Gray, J.T.; Magnier, M.; Baba, T.; D’Amato, R.J.; Mulligan, R.C. Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 2004, 431, 471–476.
https://doi.org/10.1038/nature02844.
- 103.
Luo, L.; Jea, J.D.; Wang, Y.; Chao, P.W.; Yen, L. Control of mammalian gene expression by modulation of polyA signal cleavage at 5′ UTR. Nat. Biotechnol. 2024, 42, 1454–1466.
https://doi.org/10.1038/s41587-023-01989-0.
- 104.
Wurmthaler, L.A.; Sack, M.; Gense, K.; Hartig, J.S.; Gamerdinger, M. A tetracycline-dependent ribozyme switch allows conditional induction of gene expression in Caenorhabditis elegans. Nat. Commun. 2019, 10, 491.
https://doi.org/10.1038/s41467-019-08412-w.
- 105.
Muller, M.; Weigand, J.E.; Weichenrieder, O.; Suess, B. Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Nucleic Acids Res. 2006, 34, 2607–2617.
https://doi.org/10.1093/nar/gkl347.
- 106.
Weigand, J.E.; Suess, B. Tetracycline aptamer-controlled regulation of pre-mRNA splicing in yeast. Nucleic Acids Res. 2007, 35, 4179–4185.
https://doi.org/10.1093/nar/gkm425.
- 107.
Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother. 2006, 58, 256–265.
- 108.
Gossen, M.; Freundlieb, S.; Bender, G.; Müller, G.; Hillen, W.; Bujard, H. Transcriptional activation by tetracyclines in mammalian cells. Science 1995, 268, 1766–1769.
https://doi.org/10.1126/science.7792603.
- 109.
Finke, M.; Brecht, D.; Stifel, J.; Gense, K.; Gamerdinger, M.; Hartig, J.S. Efficient splicing-based RNA regulators for tetracycline-inducible gene expression in human cell culture and C. elegans. Nucleic Acids Res. 2021, 49, e71.
https://doi.org/10.1093/nar/gkab233.
- 110.
Nomura, Y.; Zhou, L.; Miu, A.; Yokobayashi, Y. Controlling mammalian gene expression by allosteric hepatitis delta virus ribozymes. ACS Synth. Biol. 2013, 2, 684–689.
https://doi.org/10.1021/sb400037a.
- 111.
Cheng, H.; Zhang, Y.; Wang, H.; Sun, N.; Liu, M.; Chen, H.; Pei, R. Regulation of MAP4K4 gene expression by RNA interference through an engineered theophylline-dependent hepatitis delta virus ribozyme switch. Mol. Biosyst. 2016, 12, 3370–3376.
https://doi.org/10.1039/c6mb00540c.
- 112.
Vogel, M.; Weigand, J.E.; Kluge, B.; Grez, M.; Suess, B. A small, portable RNA device for the control of exon skipping in mammalian cells. Nucleic Acids Res. 2018, 46, e48.
https://doi.org/10.1093/nar/gky062.
- 113.
Dohno, C.; Kimura, M.; Nakatani, K. Restoration of Ribozyme Tertiary Contact and Function by Using a Molecular Glue for RNA. Angew. Chem. Int. Ed. Engl. 2018, 57, 506–510.
https://doi.org/10.1002/anie.201709041.
- 114.
Mou, H.; Zhong, G.; Gardner, M.R.; Wang, H.; Wang, Y.W.; Cheng, D.; Farzan, M. Conditional Regulation of Gene Expression by Ligand-Induced Occlusion of a MicroRNA Target Sequence. Mol. Ther. 2018, 26, 1277–1286.
https://doi.org/10.1016/j.ymthe.2018.02.021.
- 115.
Tickner, Z.J.; Farzan, M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals 2021, 14, 554.
https://doi.org/10.3390/ph14060554.
- 116.
Eriksson, R.A.E.; Nieminen, T.; Galibert, L.; Peltola, S.K.; Tikkanen, P.; Kayhty, P.; Lesch, H.P.; Yla-Herttuala, S.; Airenne, K.J. Optimized riboswitch-regulated AAV vector for VEGF-B gene therapy. Front. Med. 2022, 9, 1052318.
https://doi.org/10.3389/fmed.2022.1052318.
- 117.
Strobel, B.; Duchs, M.J.; Blazevic, D.; Rechtsteiner, P.; Braun, C.; Baum-Kroker, K.S.; Schmid, B.; Ciossek, T.; Gottschling, D.; Hartig, J.S.; et al. A Small-Molecule-Responsive Riboswitch Enables Conditional Induction of Viral Vector-Mediated Gene Expression in Mice. ACS Synth. Biol. 2020, 9, 1292–1305.
https://doi.org/10.1021/acssynbio.9b00410.
- 118.
Takahashi, K.; Yokobayashi, Y. Reversible Gene Regulation in Mammalian Cells Using Riboswitch-Engineered Vesicular Stomatitis Virus Vector. ACS Synth. Biol. 2019, 8, 1976–1982.
https://doi.org/10.1021/acssynbio.9b00177.
- 119.
Zhong, G.; Wang, H.; He, W.; Li, Y.; Mou, H.; Tickner, Z.J.; Tran, M.H.; Ou, T.; Yin, Y.; Diao, H.; et al. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nat. Biotechnol. 2020, 38, 169–175.
https://doi.org/10.1038/s41587-019-0357-y.
- 120.
Fukunaga, K.; Dhamodharan, V.; Miyahira, N.; Nomura, Y.; Mustafina, K.; Oosumi, Y.; Takayama, K.; Kanai, A.; Yokobayashi, Y. Small-Molecule Aptamer for Regulating RNA Functions in Mammalian Cells and Animals. J. Am. Chem. Soc. 2023, 145, 7820–7828.
https://doi.org/10.1021/jacs.2c12332.
- 121.
- 122.
Carver, K.; Negrete, D.; Waterman, M.; Daddacha, W. Chapter 9–Vectors in gene therapy: Benefit for glioblastoma patients. In New Targeting in the Reversal of Resistant Glioblastomas, Arbab, A.S., Ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 14, pp. 161–176.
- 123.
Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; et al. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem Cell Res. Ther. 2022, 13, 366.
https://doi.org/10.1186/s13287-022-03054-0.
- 124.
- 125.
Childs-Disney, J.L.; Yang, X.; Gibaut, Q.M.R.; Tong, Y.; Batey, R.T.; Disney, M.D. Targeting RNA structures with small molecules. Nat. Rev. Drug Discov. 2022, 21, 736–762.
https://doi.org/10.1038/s41573-022-00521-4.
- 126.
Hueso, M.; Mallén, A.; Suñé-Pou, M.; Aran, J.M.; Suñé-Negre, J.M.; Navarro, E. ncRNAs in Therapeutics: Challenges and Limitations in Nucleic Acid-Based Drug Delivery. Int. J. Mol. Sci. 2021, 22, 11596.
https://doi.org/10.3390/ijms222111596.
- 127.
- 128.
- 129.
- 130.
Wang, H.; Qin, M.; Liu, R.; Ding, X.; Chen, I.S.Y.; Jiang, Y. Characterization of A Bifunctional Synthetic RNA Aptamer and A Truncated Form for Ability to Inhibit Growth of Non-Small Cell Lung Cancer. Sci. Rep. 2019, 9, 18836.
https://doi.org/10.1038/s41598-019-55280-x.
- 131.
Han, S.R.; Lee, C.H.; Im, J.Y.; Kim, J.H.; Kim, J.H.; Kim, S.J.; Cho, Y.W.; Kim, E.; Kim, Y.; Ryu, J.H.; et al. Targeted suicide gene therapy for liver cancer based on ribozyme-mediated RNA replacement through post-transcriptional regulation. Mol. Ther. Nucleic Acids 2021, 23, 154–168.
https://doi.org/10.1016/j.omtn.2020.10.036.
- 132.
- 133.
Hiltensperger, M.; Krackhardt, A.M. Current and future concepts for the generation and application of genetically engineered CAR-T and TCR-T cells. Front. Immunol. 2023, 14, 1121030.
https://doi.org/10.3389/fimmu.2023.1121030.