- 1.
Cade, W.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys. Ther. 2008, 88, 1322–1335.
- 2.
Zhu, Y.; Shui, X.; Liang, Z.; et al. Gut microbiota metabolites as integral mediators in cardiovascular diseases (Review). Int. J. Mol. Med. 2020, 46, 936–948.
- 3.
Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71.
- 4.
Wang, K.; Zhang, Z.; Hang, J.; et al. Microbial-host-isozyme analyses reveal microbial DPP4 as a potential antidiabetic target. Science 2023, 381, eadd5787.
- 5.
Arora, T.; Seyfried, F.; Docherty, N.G.; et al. Diabetes-associated microbiota in fa/fa rats is modified by Roux-en-Y gastric bypass. ISME J. 2017, 11, 2035–2046.
- 6.
Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712.
- 7.
Westendorp, W.F.; Vermeij, J.D.; Vermeij, F.; et al. Antibiotic therapy for preventing infections in patients with acute stroke. Cochrane Database Syst. Rev. 2012, 1, CD008530.
- 8.
Westendorp, W.F.; Vermeij, J.D.; Zock, E.; et al. The Preventive Antibiotics in Stroke Study (PASS): A pragmatic randomised open-label masked endpoint clinical trial. Lancet 2015, 385, 1519–1526.
- 9.
Tziomalos, K.; Ntaios, G.; Miyakis, S.; et al. Prophylactic antibiotic treatment in severe acute ischemic stroke: The Antimicrobial chemopRrophylaxis for Ischemic STrokE In MaceDonIa-Thrace Study (ARISTEIDIS). Intern. Emerg. Med. 2016, 11, 953–958.
- 10.
Benakis, C.; Brea, D.; Caballero, S.; et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal gammadelta T cells. Nat. Med. 2016, 22, 516–523.
- 11.
Xia, G.H.; You, C.; Gao, X.X.; et al. Stroke Dysbiosis Index (SDI) in Gut Microbiome Are Associated with Brain Injury and Prognosis of Stroke. Front. Neurol. 2019, 10, 397.
- 12.
Wang, Q.; Dai, H.; Hou, T.; et al. Dissecting Causal Relationships Between Gut Microbiota, Blood Metabolites, and Stroke: A Mendelian Randomization Study. J. Stroke 2023, 25, 350–360.
- 13.
Li, N.; Wang, X.; Sun, C.; et al. Change of intestinal microbiota in cerebral ischemic stroke patients. BMC Microbiol. 2019, 19, 191.
- 14.
Xu, K.; Gao, X.; Xia, G.; et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut 2021, 70, 1486–1494.
- 15.
Yin, J.; Liao, S.X.; He, Y.; et al. Dysbiosis of Gut Microbiota with Reduced Trimethylamine-N-Oxide Level in Patients with Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. J. Am. Heart Assoc. 2015, 4, e002699.
- 16.
Chen, Y.; Liang, J.; Ouyang, F.; et al. Persistence of Gut Microbiota Dysbiosis and Chronic Systemic Inflammation After Cerebral Infarction in Cynomolgus Monkeys. Front. Neurol. 2019, 10, 661.
- 17.
Singh, V.; Roth, S.; Llovera, G.; et al. Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. J. Neurosci. 2016, 36, 7428–7440.
- 18.
Stanley, D.; Moore, R.J.; Wong, C.H.Y. An insight into intestinal mucosal microbiota disruption after stroke. Sci. Rep. 2018, 8, 568.
- 19.
Ji, W.; Zhu, Y.; Kan, P.; et al. Analysis of intestinal microbial communities of cerebral infarction and ischemia patients based on high throughput sequencing technology and glucose and lipid metabolism. Mol. Med. Rep. 2017, 16, 5413–5417.
- 20.
Han, Y.; Gong, Z.; Sun, G.; et al. Dysbiosis of Gut Microbiota in Patients with Acute Myocardial Infarction. Front. Microbiol. 2021, 12, 680101.
- 21.
Dong, C.; Yang, Y.; Wang, Y.; et al. Gut microbiota combined with metabolites reveals unique features of acute myocardial infarction patients different from stable coronary artery disease. J. Adv. Res. 2023, 46, 101–112.
- 22.
Wu, Z.X.; Li, S.F.; Chen, H.; et al. The changes of gut microbiota after acute myocardial infarction in rats. PLoS ONE 2017, 12, e0180717.
- 23.
Cheng, P.; Zeng, W.; Li, L.; et al. PLGA-PNIPAM Microspheres Loaded with the Gastrointestinal Nutrient NaB Ameliorate Cardiac Dysfunction by Activating Sirt3 in Acute Myocardial Infarction. Adv. Sci. 2016, 3, 1600254.
- 24.
Emoto, T.; Yamashita, T.; Sasaki, N.; et al. Analysis of Gut Microbiota in Coronary Artery Disease Patients: A Possible Link between Gut Microbiota and Coronary Artery Disease. J. Atheroscler. Thromb. 2016, 23, 908–921.
- 25.
Choroszy, M.; Litwinowicz, K.; Bednarz, R.; et al. Human Gut Microbiota in Coronary Artery Disease: A Systematic Review and Meta-Analysis. Metabolites 2022, 12, 1165.
- 26.
Xue, H.; Chen, X.; Yu, C.; et al. Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease. Circ. Res. 2022, 131, 404–420.
- 27.
Karlsson, F.H.; Fak, F.; Nookaew, I.; et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 2012, 3, 1245.
- 28.
Jie, Z.; Xia, H.; Zhong, S.L.; et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017, 8, 845.
- 29.
Yoshida, N.; Emoto, T.; Yamashita, T.; et al. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation 2018, 138, 2486–2498.
- 30.
Prasad, R.; Asare-Bediko, B.; Harbour, A.; et al. Microbial Signatures in The Rodent Eyes with Retinal Dysfunction and Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. 2022, 63, 5.
- 31.
Wang, X.X.; Wang, D.; Luo, Y.; et al. FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. J. Am. Soc. Nephrol. 2018, 29, 118–137.
- 32.
Das, T.; Jayasudha, R.; Chakravarthy, S.; et al. Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Sci. Re.p 2021, 11, 2738.
- 33.
Bai, J.; Wan, Z.; Zhang, Y.; et al. Composition and diversity of gut microbiota in diabetic retinopathy. Front. Microbiol. 2022, 13, 926926.
- 34.
Moubayed, N.M.; Bhat, R.S.; Al Farraj, D.; et al. Screening and identification of gut anaerobes (Bacteroidetes) from human diabetic stool samples with and without retinopathy in comparison to control subjects. Microb. Pathog. 2019, 129, 88–92.
- 35.
Singh, V.; Yeoh, B.S.; Vijay-Kumar, M. Gut microbiome as a novel cardiovascular therapeutic target. Curr. Opin. Pharmacol. 2016, 27, 8–12.
- 36.
Zhao, S.; Yan, Q.; Xu, W.; et al. Gut microbiome in diabetic retinopathy: A systematic review and meta-analysis. Microb. Pathog. 2024, 189, 106590.
- 37.
Maruvada, P.; Leone, V.; Kaplan, L.M.; et al. The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe 2017, 22, 589–599.
- 38.
Du, X.; Liu, J.; Xue, Y.; et al. Alteration of gut microbial profile in patients with diabetic nephropathy. Endocrine 2021, 73, 71–84.
- 39.
Hu, Z.B.; Lu, J.; Chen, P.P.; et al. Dysbiosis of intestinal microbiota mediates tubulointerstitial injury in diabetic nephropathy via the disruption of cholesterol homeostasis. Theranostics 2020, 10, 2803–2816.
- 40.
Chen, W.; Zhang, M.; Guo, Y.; et al. The Profile and Function of Gut Microbiota in Diabetic Nephropathy. Diabetes Metab. Syndr. Obes. 2021, 14, 4283–4296.
- 41.
Zhang, L.; Lu, Q.Y.; Wu, H.; et al. The Intestinal Microbiota Composition in Early and Late Stages of Diabetic Kidney Disease. Microbiol. Spectr. 2023, 11, e0038223.
- 42.
Allin, K.H.; Tremaroli, V.; Caesar, R.; et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia 2018, 61, 810–820.
- 43.
Chen, X.; Wu, Q.; Gao, X.; et al. Gut Microbial Dysbiosis Associated with Type 2 Diabetes Aggravates Acute Ischemic Stroke. mSystems 2021, 6, e0130421.
- 44.
Guo, Q.; Jiang, X.; Ni, C.; et al. Gut Microbiota-Related Effects of Tanhuo Decoction in Acute Ischemic Stroke. Oxid. Med. Cell Longev. 2021, 2021, 5596924.
- 45.
Tian, R.; Liu, H.; Feng, S.; et al. Gut microbiota dysbiosis in stable coronary artery disease combined with type 2 diabetes mellitus influences cardiovascular prognosis. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1454–1466.
- 46.
Sanchez-Alcoholado, L.; Castellano-Castillo, D.; Jordan-Martinez, L.; et al. Role of Gut Microbiota on Cardio-Metabolic Parameters and Immunity in Coronary Artery Disease Patients with and without Type-2 Diabetes Mellitus. Front. Microbiol. 2017, 8, 1936.
- 47.
Li, Y.; Liu, Y.; Cui, J.; et al. Oral-gut microbial transmission promotes diabetic coronary heart disease. Cardiovasc. Diabetol. 2024, 23, 123.
- 48.
Huang, Y.; Wang, Z.; Ma, H.; et al. Dysbiosis and Implication of the Gut Microbiota in Diabetic Retinopathy. Front. Cell Infect. Microbiol. 2021, 11, 646348.
- 49.
Jiang, S.; Xie, S.; Lv, D.; et al. Alteration of the gut microbiota in Chinese population with chronic kidney disease. Sci. Rep. 2017, 7, 2870.
- 50.
Tao, S.; Li, L.; Li, L.; et al. Understanding the gut-kidney axis among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls: An analysis of the gut microbiota composition. Acta Diabetol. 2019, 56, 581–592.
- 51.
Miller, T.L.; Wolin, M.J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 1996, 62, 1589–1592.
- 52.
Cummings, J.H.; Pomare, E.W.; Branch, W.J.; et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 28, 1221–1227.
- 53.
Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590.
- 54.
Tan, C.; Wu, Q.; Wang, H.; et al. Dysbiosis of Gut Microbiota and Short-Chain Fatty Acids in Acute Ischemic Stroke and the Subsequent Risk for Poor Functional Outcomes. JPEN J. Parenter. Enteral. Nutr. 2021, 45, 518–529.
- 55.
Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200.
- 56.
Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu, M.; et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014, 5, 3611.
- 57.
Chen, R.; Xu, Y.; Wu, P.; et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota. Pharmacol. Res. 2019, 148, 104403.
- 58.
Domingues, H.S.; Portugal, C.C.; Socodato, R.; et al. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front. Cell Dev. Biol. 2016, 4, 71.
- 59.
Kasarello, K.; Cudnoch-Jedrzejewska, A.; Czarzasta, K. Communication of gut microbiota and brain via immune and neuroendocrine signaling. Front. Microbiol. 2023, 14, 1118529.
- 60.
Sugiyama, S.; Sasaki, T.; Tanaka, H.; et al. The tight junction protein occludin modulates blood-brain barrier integrity and neurological function after ischemic stroke in mice. Sci. Rep. 2023, 13, 2892.
- 61.
Haruwaka, K.; Ikegami, A.; Tachibana, Y.; et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun. 2019, 10, 5816.
- 62.
Kleinschnitz, C.; Schwab, N.; Kraft, P.; et al. Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 2010, 115, 3835–3842.
- 63.
Chelluboina, B.; Cho, T.; Park, J.S.; et al. Intermittent fasting induced cerebral ischemic tolerance altered gut microbiome and increased levels of short-chain fatty acids to a beneficial phenotype. Neurochem. Int. 2024, 178, 105795.
- 64.
Jeon, J.H.; Kaiser, E.E.; Waters, E.S.; et al. Tanshinone IIA-loaded nanoparticles and neural stem cell combination therapy improves gut homeostasis and recovery in a pig ischemic stroke model. Sci. Rep. 2023, 13, 2520.
- 65.
Guo, M.; Fan, X.; Tuerhongjiang, G.; et al. Targeted metabolomic analysis of plasma fatty acids in acute myocardial infarction in young adults. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3131–3141.
- 66.
Tang, T.W.H.; Chen, H.C.; Chen, C.Y.; et al. Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair. Circulation 2019, 139, 647–659.
- 67.
Modrego, J.; Ortega-Hernandez, A.; Goirigolzarri, J.; et al. Gut Microbiota and Derived Short-Chain Fatty Acids Are Linked to Evolution of Heart Failure Patients. Int. J. Mol. Sci. 2023, 24, 13892.
- 68.
Nemet, I.; Saha, P.P.; Gupta, N.; et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell 2020, 180, 862–877.e22.
- 69.
Li, M.; van Esch, B.; Henricks, P.A.J.; et al. The Anti-inflammatory Effects of Short Chain Fatty Acids on Lipopolysaccharide- or Tumor Necrosis Factor alpha-Stimulated Endothelial Cells via Activation of GPR41/43 and Inhibition of HDACs. Front. Pharmacol. 2018, 9, 533.
- 70.
Tian, Q.; Leung, F.P.; Chen, F.M.; et al. Butyrate protects endothelial function through PPARdelta/miR-181b signaling. Pharmacol. Res. 2021, 169, 105681.
- 71.
Haghikia, A.; Zimmermann, F.; Schumann, P.; et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur. Heart J. 2022, 43, 518–533.
- 72.
Chen, N.; Wu, J.; Wang, J.; et al. Short chain fatty acids inhibit endotoxin-induced uveitis and inflammatory responses of retinal astrocytes. Exp. Eye Res. 2021, 206, 108520.
- 73.
Huang, Y.; Wang, Z.; Ye, B.; et al. Sodium butyrate ameliorates diabetic retinopathy in mice via the regulation of gut microbiota and related short-chain fatty acids. J. Transl. Med. 2023, 21, 451.
- 74.
Wang, Y.; Fan, L.; Meng, X.; et al. Transplantation of IL-10-transfected endothelial progenitor cells improves retinal vascular repair via suppressing inflammation in diabetic rats. Graefes. Arch. Clin. Exp. Ophthalmol. 2016, 254, 1957–1965.
- 75.
Li, Y.J.; Chen, X.; Kwan, T.K.; et al. Dietary Fiber Protects against Diabetic Nephropathy through Short-Chain Fatty Acid-Mediated Activation of G Protein-Coupled Receptors GPR43 and GPR109A. J. Am. Soc. Nephrol. 2020, 31, 1267–1281.
- 76.
Du, Y.; Yang, Y.T.; Tang, G.; et al. Butyrate alleviates diabetic kidney disease by mediating the miR-7a-5p/P311/TGF-beta1 pathway. FASEB J. 2020, 34, 10462–10475.
- 77.
Ye, K.; Zhao, Y.; Huang, W.; et al. Sodium butyrate improves renal injury in diabetic nephropathy through AMPK/SIRT1/PGC-1alpha signaling pathway. Sci. Rep. 2024, 14, 17867.
- 78.
Si, H.; Chen, Y.; Hu, D.; et al. A graminan type fructan from Achyranthes bidentata prevents the kidney injury in diabetic mice by regulating gut microbiota. Carbohydr. Polym. 2024, 339, 122275.
- 79.
Luo, L.; Luo, J.; Cai, Y.; et al. Inulin-type fructans change the gut microbiota and prevent the development of diabetic nephropathy. Pharmacol. Res. 2022, 183, 106367.
- 80.
Zhang, M.; Yang, L.; Zhu, M.; et al. Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. Int. J. Biol. Macromol. 2022, 206, 849–860.
- 81.
Pan, S.; Jiang, S.S.; Li, R.; et al. Hong Guo Ginseng Guo (HGGG) protects against kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome and regulating intestinal flora. Phytomedicine 2024, 132, 155861.
- 82.
Hua, Q.; Han, Y.; Zhao, H.; et al. Punicalagin alleviates renal injury via the gut-kidney axis in high-fat diet-induced diabetic mice. Food Funct. 2022, 13, 867–879.
- 83.
Yan, H.; Zhang, Y.; Lin, X.; et al. Resveratrol improves diabetic kidney disease by modulating the gut microbiota-short chain fatty acids axis in db/db mice. Int. J. Food Sci. Nutr. 2024, 75, 264–276.
- 84.
Charach, G.; Karniel, E.; Novikov, I.; et al. Reduced bile acid excretion is an independent risk factor for stroke and mortality: A prospective follow-up study. Atherosclerosis 2020, 293, 79–85.
- 85.
Liu, J.; Yuan, J.; Zhao, J.; et al. Serum metabolomic patterns in young patients with ischemic stroke: A case study. Metabolomics 2021, 17, 24.
- 86.
Wang, K.; Zhang, Y.; Zhong, C.; et al. Increased Serum Total Bile Acids can be Associated with a Small Hematoma Volume and Decreased Clinical Severity During Acute Intracerebral Hemorrhage. Curr. Neurovasc. Res. 2018, 15, 158–163.
- 87.
Keitel, V.; Gorg, B.; Bidmon, H.J.; et al. The bile acid receptor TGR5 (Gpbar-1) acts as a neurosteroid receptor in brain. Glia 2010, 58, 1794–1805.
- 88.
McMillin, M.; Frampton, G.; Tobin, R.; et al. TGR5 signaling reduces neuroinflammation during hepatic encephalopathy. J. Neurochem. 2015, 135, 565–576.
- 89.
Zhang, F.; Deng, Y.; Wang, H.; et al. Gut microbiota-mediated ursodeoxycholic acids regulate the inflammation of microglia through TGR5 signaling after MCAO. Brain Behav. Immun. 2024, 115, 667–679.
- 90.
Liang, J.; Zhang, M.; Wang, H.; et al. Cholestyramine resin administration alleviated cerebral ischemic injury in obese mice by improving gut dysbiosis and modulating the bile acid profile. Exp. Neurol. 2023, 359, 114234.
- 91.
Wang, K.; Chen, Y.; Cao, J.; et al. Mechanism of Huangqi-Honghua combination regulating the gut microbiota to affect bile acid metabolism towards preventing cerebral ischaemia-reperfusion injury in rats. Pharm. Biol. 2022, 60, 2189–2199.
- 92.
Ridlon, J.M.; Harris, S.C.; Bhowmik, S.; et al. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 2016, 7, 22–39.
- 93.
Zhou, X.; Li, J.; Guo, J.; et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 2018, 6, 66.
- 94.
Liu, T.T.; Wang, J.; Liang, Y.; et al. The level of serum total bile acid is related to atherosclerotic lesions, prognosis and gut Lactobacillus in acute coronary syndrome patients. Ann. Med. 2023, 55, 2232369.
- 95.
Lam, V.; Su, J.; Koprowski, S.; et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012, 26, 1727–1735.
- 96.
Li, W.; Shu, S.; Cheng, L.; et al. Fasting serum total bile acid level is associated with coronary artery disease, myocardial infarction and severity of coronary lesions. Atherosclerosis 2020, 292, 193–200.
- 97.
Zhang, Z.; Lv, T.; Wang, X.; et al. Role of the microbiota-gut-heart axis between bile acids and cardiovascular disease. Biomed. Pharmacothe.r 2024, 174, 116567.
- 98.
Long, S.L.; Gahan, C.G.M.; Joyce, S.A. Interactions between gut bacteria and bile in health and disease. Mol. Aspects Med. 2017, 56, 54–65.
- 99.
Rivard, A.L.; Steer, C.J.; Kren, B.T.; et al. Administration of tauroursodeoxycholic acid (TUDCA) reduces apoptosis following myocardial infarction in rat. Am. J. Chin. Med. 2007, 35, 279–295.
- 100.
Wang, Z.; Tang, J.; Jin, E.; et al. Metabolomic comparison followed by cross-validation of enzyme-linked immunosorbent assay to reveal potential biomarkers of diabetic retinopathy in Chinese with type 2 diabetes. Front. Endocrinol. 2022, 13, 986303.
- 101.
Beli, E.; Yan, Y.; Moldovan, L.; et al. Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice. Diabetes 2018, 67, 1867–1879.
- 102.
Li, J.; Huang, Z.; Jin, Y.; et al. Neuroprotective Effect of Tauroursodeoxycholic Acid (TUDCA) on In Vitro and In Vivo Models of Retinal Disorders: A Systematic Review. Curr. Neuropharmacol. 2024, 22, 1374–1390.
- 103.
Wang, C.F.; Yuan, J.R.; Qin, D.; et al. Protection of tauroursodeoxycholic acid on high glucose-induced human retinal microvascular endothelial cells dysfunction and streptozotocin-induced diabetic retinopathy rats. J. Ethnopharmacol. 2016, 185, 162–170.
- 104.
Shiraya, T.; Araki, F.; Ueta, T.; et al. Ursodeoxycholic Acid Attenuates the Retinal Vascular Abnormalities in Anti-PDGFR-beta Antibody-Induced Pericyte Depletion Mouse Models. Sci. Rep. 2020, 10, 977.
- 105.
Xiao, X.; Zhang, J.; Ji, S.; et al. Lower bile acids as an independent risk factor for renal outcomes in patients with type 2 diabetes mellitus and biopsy-proven diabetic kidney disease. Front. Endocrinol. 2022, 13, 1026995.
- 106.
Castaneda, T.R.; Mendez, M.; Davison, I.; et al. The Novel Phosphate and Bile Acid Sequestrant Polymer SAR442357 Delays Disease Progression in a Rat Model of Diabetic Nephropathy. J. Pharmacol. Exp. Ther. 2021, 376, 190–203.
- 107.
Zhang, J.; Fan, Y.; Zeng, C.; et al. Tauroursodeoxycholic Acid Attenuates Renal Tubular Injury in a Mouse Model of Type 2 Diabetes. Nutrients 2016, 8, 589.
- 108.
Chen, Y.; Liu, C.P.; Xu, K.F.; et al. Effect of taurine-conjugated ursodeoxycholic acid on endoplasmic reticulum stress and apoptosis induced by advanced glycation end products in cultured mouse podocytes. Am. J. Nephrol. 2008, 28, 1014–1022.
- 109.
Cao, A.L.; Wang, L.; Chen, X.; et al. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Lab. Invest. 2016, 96, 610–622.
- 110.
Osorio, H.; Coronel, I.; Arellano, A.; et al. Ursodeoxycholic acid decreases sodium-glucose cotransporter (SGLT2) expression and oxidative stress in the kidney of diabetic rats. Diabetes Res Clin. Pract. 2012, 97, 276–282.
- 111.
Wang, X.X.; Edelstein, M.H.; Gafter, U.; et al. G Protein-Coupled Bile Acid Receptor TGR5 Activation Inhibits Kidney Disease in Obesity and Diabetes. J. Am. Soc. Nephrol. 2016, 27, 1362–1378.
- 112.
Wei, H.; Wang, L.; An, Z.; et al. QiDiTangShen granules modulated the gut microbiome composition and improved bile acid pro fi les in a mouse model of diabetic nephropathy. Biomed. Pharmacother. 2021, 133, 111061.
- 113.
Zhao, J.; Zhang, Q.L.; Shen, J.H.; et al. Magnesium lithospermate B improves the gut microbiome and bile acid metabolic profiles in a mouse model of diabetic nephropathy. Acta Pharmacol. Sin. 2019, 40, 507–513.
- 114.
Dong, W.; Zhao, Y.; Li, X.; et al. Corn silk polysaccharides attenuate diabetic nephropathy through restoration of the gut microbial ecosystem and metabolic homeostasis. Front. Endocrinol. 2023, 14, 1232132.
- 115.
Ahad, A.; Raish, M.; Ahmad, A.; et al. Eprosartan mesylate loaded bilosomes as potential nano-carriers against diabetic nephropathy in streptozotocin-induced diabetic rats. Eur. J. Pharm. Sci. 2018, 111, 409–417.
- 116.
Benson, T.W.; Conrad, K.A.; Li, X.S.; et al. Gut Microbiota-Derived Trimethylamine N-Oxide Contributes to Abdominal Aortic Aneurysm Through Inflammatory and Apoptotic Mechanisms. Circulation 2023, 147, 1079–1096.
- 117.
Rath, S.; Rox, K.; Kleine Bardenhorst, S.; et al. Higher Trimethylamine-N-Oxide Plasma Levels with Increasing Age Are Mediated by Diet and Trimethylamine-Forming Bacteria. mSystems 2021, 6, e0094521.
- 118.
Tang, W.H.; Wang, Z.; Levison, B.S.; et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584.
- 119.
Zhu, W.; Romano, K.A.; Li, L.; et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe 2021, 29, 1199–1208.e5.
- 120.
Koeth, R.A.; Wang, Z.; Levison, B.S.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585.
- 121.
Wang, Z.; Klipfell, E.; Bennett, B.J.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63.
- 122.
Seldin, M.M.; Meng, Y.; Qi, H.; et al. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-kappaB. J. Am. Heart Assoc. 2016, 5, e002767.
- 123.
Zhu, W.; Gregory, J.C.; Org, E.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124.
- 124.
Dai, Y.; Sun, Z.; Zheng, Y.; et al. Recent advances in the gut microbiome and microbial metabolites alterations of coronary artery disease. Sci. Bull. 2023, 68, 549–552.
- 125.
Amini, M.; Parvaresh, E. Prevalence of macro- and microvascular complications among patients with type 2 diabetes in Iran: A systematic review. Diabetes Res. Clin. Pract. 2009, 83, 18–25.
- 126.
Fowkes, F.G.; Rudan, D.; Rudan, I.; et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340.
- 127.
Wang, Z.; Roberts, A.B.; Buffa, J.A.; et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell 2015, 163, 1585–1595.
- 128.
Chen, S.; Henderson, A.; Petriello, M.C.; et al. Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metab. 2019, 30, 1141–1151.e5.
- 129.
Heianza, Y.; Ma, W.; DiDonato, J.A.; et al. Long-Term Changes in Gut Microbial Metabolite Trimethylamine N-Oxide and Coronary Heart Disease Risk. J. Am. Coll. Cardiol. 2020, 75, 763–772.
- 130.
Liu, S.; He, F.; Zheng, T.; et al. Ligustrum robustum Alleviates Atherosclerosis by Decreasing Serum TMAO, Modulating Gut Microbiota, and Decreasing Bile Acid and Cholesterol Absorption in Mice. Mol. Nutr. Food Res. 2021, 65, e2100014.
- 131.
Li, Y.; Shi, G.; Han, Y.; et al. Therapeutic potential of human umbilical cord mesenchymal stem cells on aortic atherosclerotic plaque in a high-fat diet rabbit model. Stem Cell Res. Ther. 2021, 12, 407.
- 132.
Zhou, S.; Xue, J.; Shan, J.; et al. Gut-Flora-Dependent Metabolite Trimethylamine-N-Oxide Promotes Atherosclerosis-Associated Inflammation Responses by Indirect ROS Stimulation and Signaling Involving AMPK and SIRT1. Nutrients 2022, 14, 3338.
- 133.
Chen, C.Y.; Leu, H.B.; Wang, S.C.; et al. Inhibition of Trimethylamine N-Oxide Attenuates Neointimal Formation Through Reduction of Inflammasome and Oxidative Stress in a Mouse Model of Carotid Artery Ligation. Antioxid. Redox Signal. 2023, 38, 215–233.
- 134.
Liu, W.; Wang, C.; Xia, Y.; et al. Elevated plasma trimethylamine-N-oxide levels are associated with diabetic retinopathy. Acta Diabetol. 2021, 58, 221–229.
- 135.
Xue, L.; Huang, L.; Tian, Y.; et al. Trimethylamine-N-Oxide Promotes High-Glucose-Induced Dysfunction and NLRP3 Inflammasome Activation in Retinal Microvascular Endothelial Cells. J. Ophthalmol. 2023, 2023, 8224752.
- 136.
Yu, P.S.; Wu, P.H.; Hung, W.W.; et al. Association Between Trimethylamine N-oxide and Adverse Kidney Outcomes and Overall Mortality in Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2024, 109, 2097–2105.
- 137.
Winther, S.A.; Ollgaard, J.C.; Tofte, N.; et al. Utility of Plasma Concentration of Trimethylamine N-Oxide in Predicting Cardiovascular and Renal Complications in Individuals with Type 1 Diabetes. Diabetes Care 2019, 42, 1512–1520.
- 138.
Fang, Q.; Liu, N.; Zheng, B.; et al. Roles of Gut Microbial Metabolites in Diabetic Kidney Disease. Front. Endocrino. 2021, 12, 636175.
- 139.
Fang, Q.; Zheng, B.; Liu, N.; et al. Trimethylamine N-Oxide Exacerbates Renal Inflammation and Fibrosis in Rats with Diabetic Kidney Disease. Front. Physiol. 2021, 12, 682482.
- 140.
Dambrova, M.; Makrecka-Kuka, M.; Kuka, J.; et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol. Rev. 2022, 74, 506–551.
- 141.
Shi, M.; He, J.; Li, C.; et al. Metabolomics study of blood pressure salt-sensitivity and hypertension. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1681–1692.
- 142.
Scarale, M.G.; Mastroianno, M.; Prehn, C.; et al. Circulating Metabolites Associate with and Improve the Prediction of All-Cause Mortality in Type 2 Diabetes. Diabetes 2022, 71, 1363–1370.
- 143.
Mihalik, S.J.; Goodpaster, B.H.; Kelley, D.E.; et al. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity 2010, 18, 1695–1700.
- 144.
Huang, K.; Li, Z.; He, X.; et al. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin alpha2beta1. Cell Metab. 2024, 36, 598–616.e9.
- 145.
Zhu, Y.; Dwidar, M.; Nemet, I.; et al. Two distinct gut microbial pathways contribute to meta-organismal production of phenylacetylglutamine with links to cardiovascular disease. Cell Host Microbe 2023, 31, 18–32.e9.
- 146.
Romano, K.A.; Nemet, I.; Prasad Saha, P.; et al. Gut Microbiota-Generated Phenylacetylglutamine and Heart Failure. Circ. Heart Fail. 2023, 16, e009972.
- 147.
Devlin, A.S.; Marcobal, A.; Dodd, D.; et al. Modulation of a Circulating Uremic Solute via Rational Genetic Manipulation of the Gut Microbiota. Cell Host Microbe 2016, 20, 709–715.
- 148.
Yang, K.; Du, C.; Wang, X.; et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice. Blood 2017, 129, 2667–2679.
- 149.
Chang, M.C.; Chang, H.H.; Chan, C.P.; et al. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS ONE 2014, 9, e114446.
- 150.
Karbowska, M.; Kaminski, T.W.; Marcinczyk, N.; et al. The Uremic Toxin Indoxyl Sulfate Accelerates Thrombotic Response after Vascular Injury in Animal Models. Toxins 2017, 9, 229.
- 151.
Brial, F.; Chilloux, J.; Nielsen, T.; et al. Human and preclinical studies of the host-gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut 2021, 70, 2105–2114.
- 152.
Nemet, I.; Li, X.S.; Haghikia, A.; et al. Atlas of gut microbe-derived products from aromatic amino acids and risk of cardiovascular morbidity and mortality. Eur. Heart J. 2023, 44, 3085–3096.
- 153.
Gao, Y.; Li, W.; Huang, X.; et al. Advances in Gut Microbiota-Targeted Therapeutics for Metabolic Syndrome. Microorganisms 2024, 12, 851.
- 154.
Karusheva, Y.; Koessler, T.; Strassburger, K.; et al. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: A randomized controlled crossover trial. Am. J. Clin. Nutr. 2019, 110, 1098–1107.
- 155.
Rajkumar, H.; Mahmood, N.; Kumar, M.; et al. Effect of probiotic (VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: A randomized, controlled trial. Mediators Inflamm. 2014, 2014, 348959.
- 156.
Cavalcante, R.G.S.; de Albuquerque, T.M.R.; de Luna Freire, M.O.; et al. The probiotic Lactobacillus fermentum 296 attenuates cardiometabolic disorders in high fat diet-treated rats. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1408–1417.
- 157.
Hussain, A.; Kwon, M.H.; Kim, H.K.; et al. Anti-Obesity Effect of Lactobacillus plantarum LB818 Is Associated with Regulation of Gut Microbiota in High-Fat Diet-Fed Obese Mice. J. Med. Food 2020, 23, 750–759.
- 158.
Chaiyasut, C.; Sivamaruthi, B.S.; Lailerd, N.; et al. Influence of Bifidobacterium breve on the Glycaemic Control, Lipid Profile and Microbiome of Type 2 Diabetic Subjects: A Preliminary Randomized Clinical Trial. Pharmaceuticals 2023, 16, 695.
- 159.
Lee, C.S.; Park, M.H.; Kim, B.K.; et al. Antiobesity Effect of Novel Probiotic Strains in a Mouse Model of High-Fat Diet-Induced Obesity. Probiotics Antimicrob. Proteins 2021, 13, 1054–1067.
- 160.
Qin, J.; Li, Y.; Cai, Z.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60.
- 161.
Zhou, T.; Qiu, S.; Zhang, L.; et al. Supplementation of Clostridium butyricum Alleviates Vascular Inflammation in Diabetic Mice. Diabetes Metab. J. 2024, 48, 390–404.
- 162.
Raygan, F.; Ostadmohammadi, V.; Asemi, Z. The effects of probiotic and selenium co-supplementation on mental health parameters and metabolic profiles in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019, 38, 1594–1598.
- 163.
Raygan, F.; Rezavandi, Z.; Bahmani, F.; et al. The effects of probiotic supplementation on metabolic status in type 2 diabetic patients with coronary heart disease. Diabetol. Metab. Syndr. 2018, 10, 51.
- 164.
Farrokhian, A.; Raygan, F.; Soltani, A.; et al. The Effects of Synbiotic Supplementation on Carotid Intima-Media Thickness, Biomarkers of Inflammation, and Oxidative Stress in People with Overweight, Diabetes, and Coronary Heart Disease: A Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics Antimicrob. Proteins 2019, 11, 133–142.
- 165.
Malik, M.; Suboc, T.M.; Tyagi, S.; et al. Lactobacillus plantarum 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men with Stable Coronary Artery Disease. Circ. Res. 2018, 123, 1091–1102.
- 166.
Gao, X.; Xu, J.; Jiang, C.; et al. Fish oil ameliorates trimethylamine N-oxide-exacerbated glucose intolerance in high-fat diet-fed mice. Food Funct. 2015, 6, 1117–1125.
- 167.
Shen, X.; Guo, G.; Feng, G.; et al. Effects of Different Carbohydrate Content Diet on Gut Microbiota and Aortic Calcification in Diabetic Mice. Diabetes Metab. Syndr. Obes. 2024, 17, 2327–2346.
- 168.
Kaye, D.M.; Shihata, W.A.; Jama, H.A.; et al. Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation 2020, 141, 1393–1403.
- 169.
Zhao, J.; Cheng, W.; Lu, H.; et al. High fiber diet attenuate the inflammation and adverse remodeling of myocardial infarction via modulation of gut microbiota and metabolites. Front. Microbiol. 2022, 13, 1046912.
- 170.
Kim, Y.; Keogh, J.B.; Clifton, P.M. Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions. Nutrients 2017, 9, 1271.
- 171.
Petersen, C.; Bharat, D.; Wankhade, U.D.; et al. Dietary Blueberry Ameliorates Vascular Complications in Diabetic Mice Possibly through NOX4 and Modulates Composition and Functional Diversity of Gut Microbes. Mol. Nutr. Food Res. 2022, 66, e2100784.
- 172.
Togo, J.; Sung, H.K. Intermittent fasting-a double edged sword for atherosclerosis. Life Metab 2024, 3, loae015.
- 173.
Wu, Z.; Zhang, B.; Chen, F.; et al. Fecal microbiota transplantation reverses insulin resistance in type 2 diabetes: A randomized, controlled, prospective study. Front. Cell Infect. Microbiol. 2022, 12, 1089991.
- 174.
Allegretti, J.R.; Kassam, Z.; Mullish, B.H.; et al. Effects of Fecal Microbiota Transplantation with Oral Capsules in Obese Patients. Clin. Gastroenterol. Hepatol. 2020, 18, 855–863.e2.
- 175.
Vrieze, A.; Van Nood, E.; Holleman, F.; et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012, 143, 913–916.e7.
- 176.
Chen, L.; Guo, L.; Feng, S.; et al. Fecal microbiota transplantation ameliorates type 2 diabetes via metabolic remodeling of the gut microbiota in db/db mice. BMJ Open Diabetes Res. Care 2023, 11, e003282.
- 177.
Bastos, R.M.C.; Simplicio-Filho, A.; Savio-Silva, C.; et al. Fecal Microbiota Transplant in a Pre-Clinical Model of Type 2 Diabetes Mellitus, Obesity and Diabetic Kidney Disease. Int. J. Mol. Sci. 2022, 23, 3842.
- 178.
Wang, M.; Zhang, T.H.; Li, Y.; et al. Atractylenolide-I Alleviates Hyperglycemia-Induced Heart Developmental Malformations through Direct and Indirect Modulation of the STAT3 Pathway. Phytomedicine 2024, 129, 155698.
- 179.
Wang, J.; Chen, P.; Cao, Q.; et al. Traditional Chinese Medicine Ginseng Dingzhi Decoction Ameliorates Myocardial Fibrosis and High Glucose-Induced Cardiomyocyte Injury by Regulating Intestinal Flora and Mitochondrial Dysfunction. Oxid. Med. Cell Longev. 2022, 2022, 9205908.
- 180.
Huang, Y.L.; Xiang, Q.; Zou, J.J.; et al. Zuogui Jiangtang Shuxin formula Ameliorates diabetic cardiomyopathy mice via modulating gut-heart axis. Front. Endocrinol. 2023, 14, 1106812.
- 181.
Lin, K.; Wang, X.; Li, J.; et al. Anti-atherosclerotic effects of geraniin through the gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway in mice. Phytomedicine 2022, 101, 154104.
- 182.
Wu, H.; Zhang, P.; Zhou, J.; et al. Paeoniflorin confers ferroptosis resistance by regulating the gut microbiota and its metabolites in diabetic cardiomyopathy. Am. J. Physiol. Cell Physiol. 2024, 326, C724–C741.
- 183.
Zhu, J.; Bao, Z.; Hu, Z.; et al. Myricetin alleviates diabetic cardiomyopathy by regulating gut microbiota and their metabolites. Nutr. Diabetes 2024, 14, 10.
- 184.
Khalaf, E.M.; Hassan, H.M.; El-Baz, A.M.; et al. A novel therapeutic combination of dapagliflozin, Lactobacillus and crocin attenuates diabetic cardiomyopathy in rats: Role of oxidative stress, gut microbiota, and PPARgamma activation. Eur. J. Pharmacol. 2022, 931, 175172.
- 185.
Wang, Q.; Huang, Y.X.; Liu, L.; et al. Pancreatic islet transplantation: Current advances and challenges. Front. Immunol. 2024, 15, 1391504.