- 1.
Xie, J.; Wang, M.; Long, Z.; Ning, H.; Li, J.; Cao, Y.; Liao, Y.; Liu, G.; Wang, F.; Pan, A. Global burden of type 2 diabetes in adolescents and young adults, 1990–2019: Systematic analysis of the Global Burden of Disease Study 2019. BMJ 2022, 379, e072385.
- 2.
- 3.
- 4.
Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701.
- 5.
Szymborska-Kajanek, A.; Psurek, A.; Hese, R.; Strojek, K. Self-monitoring of blood glucose in treatment of type 2 diabetes. Diabetes Res. Clin. Pract. 2009, 86, S49–S52.
- 6.
Cheng, R.; Taleb, N.; Wu, Z.; Bouchard, D.; Parent, V.; Lalanne-Mistrih, M.L.; Boudreau, V.; Messier, V.; Lacombe, M.J.; Grou, C.; et al. Managing Impending Nonsevere Hypoglycemia with Oral Carbohydrates in Type 1 Diabetes: The REVERSIBLE Trial. Diabetes Care 2024, 47, 476–482.
- 7.
Zhang, Y.; Yang, Y.; Huang, Q.; Zhang, Q.; Li, M.; Wu, Y. The effectiveness of lifestyle interventions for diabetes remission on patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Worldviews Evid. Based Nurs. 2022, 20, 64–78.
- 8.
Jenum, A.K.; Brekke, I.; Mdala, I.; Muilwijk, M.; Ramachandran, A.; Kjøllesdal, M.; Andersen, E.; Richardsen, K.R.; Douglas, A.; Cezard, G.; et al. Effects of dietary and physical activity interventions on the risk of type 2 diabetes in South Asians: Meta-analysis of individual participant data from randomised controlled trials. Diabetologia 2019, 62, 1337–1348.
- 9.
Lin, M.; Chen, T.; Fan, G. Current status and influential factors associated with adherence to self-monitoring of blood glucose with type 2 diabetes mellitus patients in grassroots communities: A cross-sectional survey based on information-motivation-behavior skills model in China. Front. Endocrinol. 2023, 14, 1111565.
- 10.
Seidu, S.; Kunutsor, S.K.; Ajjan, R.A.; Choudhary, P. Efficacy and Safety of Continuous Glucose Monitoring and Intermittently Scanned Continuous Glucose Monitoring in Patients with Type 2 Diabetes: A Systematic Review and Meta-analysis of Interventional Evidence. Diabetes Care 2023, 47, 169–179.
- 11.
Boland, E.; Monsod, T.; Delucia, M.; Brandt, C.A.; Fernando, S.; Tamborlane, W.V. Limitations of conventional methods of self-monitoring of blood glucose: Lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes. Diabetes Care 2001, 24, 1858–1862.
- 12.
Huang, X.; Yao, C.; Huang, S.; Zheng, S.; Liu, Z.; Liu, J.; Wang, J.; Chen, H.J.; Xie, X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens. 2024, 9, 1065–1088.
- 13.
Yang, J.; Gong, X.; Chen, S.; Zheng, Y.; Peng, L.; Liu, B.; Chen, Z.; Xie, X.; Yi, C.; Jiang, L. Development of Smartphone-Controlled and Microneedle-Based Wearable Continuous Glucose Monitoring System for Home-Care Diabetes Management. ACS Sens. 2023, 8, 1241–1251.
- 14.
Chakravadhanula, K. A smartphone-based test and predictive models for rapid, non-invasive, and point-of-care monitoring of ocular and cardiovascular complications related to diabetes. Inform. Med. Unlocked 2021, 24, 100485.
- 15.
Beck, R.W.; Riddlesworth, T.D.; Ruedy, K.; Ahmann, A.; Haller, S.; Kruger, D.; McGill, J.B.; Polonsky, W.; Price, D.; Aronoff, S.; et al. Continuous Glucose Monitoring Versus Usual Care in Patients with Type 2 Diabetes Receiving Multiple Daily Insulin Injections: A Randomized Trial. Ann. Intern. Med. 2017, 167, 365.
- 16.
Ahmed, A.; Aziz, S.; Abd-alrazaq, A.; Farooq, F.; Sheikh, J. Overview of Artificial Intelligence–Driven Wearable Devices for Diabetes: Scoping Review. J. Med. Internet Res. 2022, 24, e36010.
- 17.
Huang, X.; Liang, B.; Huang, S.; Liu, Z.; Yao, C.; Yang, J.; Zheng, S.; Wu, F.; Yue, W.; Wang, J.; et al. Integrated electronic/fluidic microneedle system for glucose sensing and insulin delivery. Theranostics 2024, 14, 1662–1682.
- 18.
Li, Q.-F.; Chen, X.; Wang, H.; Liu, M.; Peng, H.-L. Pt/MXene-Based Flexible Wearable Non-Enzymatic Electrochemical Sensor for Continuous Glucose Detection in Sweat. ACS Appl. Mater. Interfaces 2023, 15, 13290–13298.
- 19.
Zafar, H.; Channa, A.; Jeoti, V.; Stojanović, G.M. Comprehensive Review on Wearable Sweat-Glucose Sensors for Continuous Glucose Monitoring. Sensors 2022, 22, 638.
- 20.
Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J. Wearable sensors: Modalities, challenges, and prospects. Lab Chip 2018, 18, 217–248.
- 21.
Gæde, P.; Vedel, P.; Larsen, N.; Jensen, G.V.; Parving, H.H.; Pedersen, O. Multifactorial Intervention and Cardiovascular Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2003, 348, 383–393.
- 22.
Park, S.H.; Yao, J.; Chua, X.H.; Chandran, S.R.; Gardner, D.S.; Khoo, C.M.; Müller-Riemenschneider, F.; Whitton, C.; van Dam, R.M. Diet and Physical Activity as Determinants of Continuously Measured Glucose Levels in Persons at High Risk of Type 2 Diabetes. Nutrients 2022, 14, 366.
- 23.
Jardine, I.R.; Christie, H.E.; Oetsch, K.; Sabag, A.; Kennedy, M.; Meyer, B.J.; Francois, M.E. Physical Activity, but Not Glycaemic Load, Is Associated with Lower Real-Time Glycaemic Control in Free-Living Women with Gestational Diabetes Mellitus. Nutrients 2023, 15, 1974.
- 24.
Vashist, S.K. Non-invasive glucose monitoring technology in diabetes management: A review. Anal. Chim. Acta 2012, 750, 16–27.
- 25.
Montagnana, M.; Caputo, M.; Giavarina, D.; Lippi, G. Overview on self-monitoring of blood glucose. Clin. Chim. Acta 2009, 402, 7–13.
- 26.
Yu, J.; Cho, J.-H.; Lee, S.-H. The era of continuous glucose monitoring and its expanded role in type 2 diabetes. J. Diabetes Investig. 2023, 14, 841–843.
- 27.
Deiss, D.; Bolinder, J.; Riveline, J.P.; Battelino, T.; Bosi, E.; Tubiana-Rufi, N.; Kerr, D.; Phillip, M. Improved glycemic control in poorly controlled patients with type 1 diabetes using real-time continuous glucose monitoring. Diabetes Care 2006, 29, 2730–2732.
- 28.
Patton, S.R. Adherence to glycemic monitoring in diabetes. J. Diabetes Sci. Technol. 2015, 9, 668–675.
- 29.
Carl, C.S.; Jensen, M.M.; Sjøberg, K.A.; Constantin-Teodosiu, D.; Hill, I.R.; Kjøbsted, R.; Greenhaff, P.L.; Wojtaszewski, J.F.; Richter, E.A.; Fritzen, A.M.; et al. Pharmacological activation of PDC flux reverses lipid-induced inhibition of insulin action in muscle during recovery from exercise. Diabetes 2024, 73, 1072–1083.
- 30.
Young, G.M.; Jacobs, P.G.; Tyler, N.S.; Nguyen, T.T.P.; Castle, J.R.; Wilson, L.M.; Branigan, D.; Gabo, V.; Guillot, F.H.; Riddell, M.C.; et al. Quantifying insulin-mediated and noninsulin-mediated changes in glucose dynamics during resistance exercise in type 1 diabetes. Am. J. Physiol.-Endocrinol. Metab. 2023, 325, E192–E206.
- 31.
Ekberg, N.R.; Catrina, S.-B.; Spégel, P. A protein-rich meal provides beneficial glycemic and hormonal responses as compared to meals enriched in carbohydrate, fat or fiber, in individuals with or without type-2 diabetes. Front. Nutr. 2024, 11, 1395745.
- 32.
Paramalingam, N.; Keating, B.L.; Chetty, T.; Fournier, P.A.; Soon, W.H.; O’Dea, J.M.; Roberts, A.G.; Horowitz, M.; Jones, T.W.; Davis, E.A. Protein Ingestion in Reducing the Risk of Late-Onset Post-Exercise Hypoglycemia: A Pilot Study in Adolescents and Youth with Type 1 Diabetes. Nutrients 2023, 15, 543.
- 33.
Pickup, J.C.; Hussain, F.; Evans, N.D.; Sachedina, N. In vivo glucose monitoring: The clinical reality and the promise. Biosens. Bioelectron. 2005, 20, 1897–1902.
- 34.
Diez Alvarez, S.; Fellas, A.; Wynne, K.; Santos, D.; Sculley, D.; Acharya, S.; Navathe, P.; Gironès, X.; Coda, A. The Role of Smartwatch Technology in the Provision of Care for Type 1 or 2 Diabetes Mellitus or Gestational Diabetes: Systematic Review. JMIR MHealth UHealth 2024, 12, e54826.
- 35.
Xu, J.; Yan, Z.; Liu, Q. Smartphone-Based Electrochemical Systems for Glucose Monitoring in Biofluids: A Review. Sensors 2022, 22, 5670.
- 36.
Daskalaki, E.; Parkinson, A.; Brew-Sam, N.; Hossain, M.Z.; O'Neal, D.; Nolan, C.J.; Suominen, H. The Potential of Current Noninvasive Wearable Technology for the Monitoring of Physiological Signals in the Management of Type 1 Diabetes: Literature Survey. J. Med. Internet Res. 2022, 24, e28901.
- 37.
Makroum, M.A.; Adda, M.; Bouzouane, A.; Ibrahim, H. Machine Learning and Smart Devices for Diabetes Management: Systematic Review. Sensors 2022, 22, 1843.
- 38.
Piaseczna, N.; Doniec, R.; Sieciński, S.; Grzegorzek, M.; Tkacz, E. Does glucose affect our vision? A preliminary study using smart glasses. In Proceedings of the 2023 IEEE EMBS Special Topic Conference on Data Science and Engineering in Healthcare, Medicine and Biology, Malta, 7–9 December 2023; pp. 113–114.
https://doi.org/10.1109/IEEECONF58974.2023.10404616.
- 39.
Zhu, T.; Li, K.; Herrero, P.; Georgiou, P. Personalized Blood Glucose Prediction for Type 1 Diabetes Using Evidential Deep Learning and Meta-Learning. IEEE Trans. Biomed. Eng. 2023, 70, 193–204.
- 40.
Carlson, A.L.; Mullen, D.M.; Bergenstal, R.M. Clinical Use of Continuous Glucose Monitoring in Adults with Type 2 Diabetes. Diabetes Technol. Ther. 2017, 19, S-4–S-11.
- 41.
Hulett, N.A.; Scalzo, R.L.; Reusch JE, B. Glucose Uptake by Skeletal Muscle within the Contexts of Type 2 Diabetes and Exercise: An Integrated Approach. Nutrients 2022, 14, 647.
- 42.
Kido, K.; Egawa, T.; Watanabe, S.; Kawanaka, K.; Treebak, J.T.; Hayashi, T. Fasting potentiates insulin-mediated glucose uptake in rested and prior-contracted rat skeletal muscle. Am. J. Physiol.-Endocrinol. Metab. 2022, 322, E425–E435.
- 43.
Kanaley, J.A.; Colberg, S.R.; Corcoran, M.H.; Malin, S.K.; Rodriguez, N.R.; Crespo, C.J.; Kirwan, J.P.; Zierath, J.R. Exercise/Physical Activity in Individuals with Type 2 Diabetes: A Consensus Statement from the American College of Sports Medicine. Med. Sci. Sports Exerc. 2022, 54, 353–368.
- 44.
Hamasaki, H. Efficacy of wearable devices to measure and promote physical activity in the management of diabetes. EMJ Diabetes 2018, 6, 62–69.
- 45.
Strain, T.; Wijndaele, K.; Dempsey, P.C.; Sharp, S.J.; Pearce, M.; Jeon, J.; Lindsay, T.; Wareham, N.; Brage, S. Wearable-device-measured physical activity and future health risk. Nat. Med. 2020, 26, 1385–1391.
- 46.
Rodriguez-León, C.; Villalonga, C.; Munoz-Torres, M.; Ruiz, J.R.; Banos, O. Mobile and Wearable Technology for the Monitoring of Diabetes-Related Parameters: Systematic Review. JMIR MHealth UHealth 2021, 9, e25138.
- 47.
Chiauzzi, E.; Rodarte, C.; DasMahapatra, P. Patient-centered activity monitoring in the self-management of chronic health conditions. BMC Med. 2015, 13, 77.
- 48.
Deichmann, J.; Bachmann, S.; Burckhardt, M.A.; Pfister, M.; Szinnai, G.; Kaltenbach, H.M. New model of glucose-insulin regulation characterizes effects of physical activity and facilitates personalized treatment evaluation in children and adults with type 1 diabetes. PLOS Comput. Biol. 2023, 19, e1010289.
- 49.
Whelan, M.E.; Denton, F.; Bourne, C.L.; Kingsnorth, A.P.; Sherar, L.B.; Orme, M.W.; Esliger, D.W. A digital lifestyle behaviour change intervention for the prevention of type 2 diabetes: A qualitative study exploring intuitive engagement with real-time glucose and physical activity feedback. BMC Public Health 2021, 21, 130.
- 50.
Askari, M.R.; Ahmadasas, M.; Shahidehpour, A.; Rashid, M.; Quinn, L.; Park, M.; Cinar, A. Multivariable Automated Insulin Delivery System for Handling Planned and Spontaneous Physical Activities. J. Diabetes Sci. Technol. 2023, 17, 1456–1469.
- 51.
Chang, C.R.; Russell, B.M.; Cyriac, T.; Francois, M.E. Using Continuous Glucose Monitoring to Prescribe a Time to Exercise for Individuals with Type 2 Diabetes. J. Clin. Med. 2023, 12, 3237.
- 52.
Jung, D.H.; Han, J.W.; Shin, H.; Lim, H.-S. Tailored Meal-Type Food Provision for Diabetes Patients Can Improve Routine Blood Glucose Management in Patients with Type 2 Diabetes: A Crossover Study. Nutrients 2024, 16, 1190.
- 53.
Gonzalez, J.S.; Tanenbaum, M.L.; Commissariat, P.V. Psychosocial factors in medication adherence and diabetes self-management: Implications for research and practice. Am. Psychol. 2016, 71, 539–551.
- 54.
Wang, D.D.; Hu, F.B. Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol. 2018, 6, 416–426.
- 55.
Spanakis, E.G.; Santana, S.; Tsiknakis, M.; Marias, K.; Sakkalis, V.; Teixeira, A.; Janssen, J.H.; De Jong, H.; Tziraki, C. Technology-Based Innovations to Foster Personalized Healthy Lifestyles and Well-Being: A Targeted Review. J. Med. Internet Res. 2016, 18, e128.
- 56.
Konstantakopoulos, F.S.; Georga, E.I.; Fotiadis, D.I. A Review of Image-Based Food Recognition and Volume Estimation Artificial Intelligence Systems. IEEE Rev. Biomed. Eng. 2024, 17, 136–152.
- 57.
Sujitha, S.; Fathima, S.M.; Kavya, S. Prototyping a Smart Medication Management System with Machine Learning-based Dosage Recommendations. In Proceedings of the 2024 5th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 18–20 September 2024; pp. 1402–1406.
https://doi.org/10.1109/ICOSEC61587.2024.10722123.
- 58.
Potyok, C.; Simon, B.; Hartveg, Á.; Siket, M.; Dénes-Fazakas, L.; Eigner, G.; Balázs, M.; Kovács, L.; Szilágyi, L. Mobile Application Development for Diabetes Patient. In Proceedings of the 2024 IEEE 18th International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 23–25 May 2024; pp. 000559–000564.
https://doi.org/10.1109/SACI60582.2024.10619902.
- 59.
Vettoretti, M.; Cappon, G.; Facchinetti, A.; Sparacino, G. Advanced Diabetes Management Using Artificial Intelligence and Continuous Glucose Monitoring Sensors. Sensors 2020, 20, 3870.
- 60.
Huang, X.; Yao, C.; Huang, S.; Zheng, S.; Liu, Z.; Liu, J.; Wang, J.; Chen, H.J.; Xie, X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens. 2024, 9, 1065–1088.
- 61.
Villena Gonzales, W.; Mobashsher, A.T.; Abbosh, A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors 2019, 19, 800.
- 62.
Massone, P.; Barbieri, M.; Angelucci, A.; Aliverti, A. Technologies for non-invasive and continuous blood glucose monitoring in sports: A Patent Landscape Analysis. In Proceedings of the 2024 IEEE International Workshop on Sport, Technology and Research (STAR) Lecco, Italy, 8–10 July 2024; pp. 5–10.
https://doi.org/10.1109/STAR62027.2024.10635992.
- 63.
Zharkikh, E.; Loktionova, Y.; Dunaev, A. Microcirculatory Dysfunction in Patients with Diabetes Mellitus Detected by a Distributed System of Wearable Laser Doppler Flowmetry Analysers. J. Biophotonics 2024, 17, e202400297.
- 64.
Azuma, L.; Natsuaki, R.; Hirose, A. Complex-domain Pulse-wave Synchronous Feature Extraction for Millimeter-wave Adaptive Glucose Concentration Estimation: Proposal and Preliminary Experiments. In Proceedings of the 2023 XXXVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Sapporo, Japan, 19–26 August 2023; pp. 1–4.
https://doi.org/10.23919/URSIGASS57860.2023.10265570.
- 65.
Sun, Y.; Cano-Garcia, H.; Kallos, E.; O’Brien, F.; Akintonde, A.; Motei, D.E.; Ancu, O.; Mackenzie, R.W.A.; Kosmas, P. Random Forest Analysis of Combined Millimeter-Wave and Near-Infrared Sensing for Noninvasive Glucose Detection. IEEE Sens. J. 2023, 23, 20294–20309.
- 66.
Schwartz, F.L.; Marling, C.R.; Bunescu, R.C. The Promise and Perils of Wearable Physiological Sensors for Diabetes Management. J. Diabetes Sci. Technol. 2018, 12, 587–591.
- 67.
Yuan, Q.; Fang, H.; Wu, X.; Wu, J.; Luo, X.; Peng, R.; Xu, S.; Yan, S. Self-Adhesive, Biocompatible, Wearable Microfluidics with Erasable Liquid Metal Plasmonic Hotspots for Glucose Detection in Sweat. ACS Appl. Mater. Interfaces 2023, 16, 66810–66818.
- 68.
Saha, T.; Del Caño, R.; Mahato, K.; De la Paz, E.; Chen, C.; Ding, S.; Yin, L.; Wang, J. Wearable Electrochemical Glucose Sensors in Diabetes Management: A Comprehensive Review. Chem. Rev. 2023, 123, 7854–7889.
- 69.
Nyiramana Mukamurera, P. Advances in Non-Invasive Glucose Monitoring: Challenges, Technologies, and Future Prospects. Res. Output J. Public Health Med. 2024, 3, 1–5.
- 70.
Wu, C.T.; Wang, S.M.; Su, Y.E.; Hsieh, T.T.; Chen, P.C.; Cheng, Y.C.; Tseng, T.W.; Chang, W.S.; Su, C.S.; Kuo, L.C.; et al. A Precision Health Service for Chronic Diseases: Development and Cohort Study Using Wearable Device, Machine Learning, and Deep Learning. IEEE J. Transl. Eng. Health Med. 2022, 10, 1–14.
- 71.
Askari, M.R.; Rashid, M.; Sun, X.; Sevil, M.; Shahidehpour, A.; Kawaji, K.; Cinar, A. Detection of Meals and Physical Activity Events From Free-Living Data of People with Diabetes. J. Diabetes Sci. Technol. 2022, 17, 1482–1492.
- 72.
van den Brink, W.J.; van den Broek, T.J.; Palmisano, S.; Wopereis, S.; de Hoogh, I.M. Digital Biomarkers for Personalized Nutrition: Predicting Meal Moments and Interstitial Glucose with Non-Invasive, Wearable Technologies. Nutrients 2022, 14, 4465.
- 73.
Phillips, N.E.; Collet, T.-H.; Naef, F. Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical modeling. Cell Rep. Methods 2023, 3, 100545.
- 74.
Ahmed, A.; Aziz, S.; Abd-Alrazaq, A.; Farooq, F.; Househ, M.; Sheikh, J. The Effectiveness of Wearable Devices Using Artificial Intelligence for Blood Glucose Level Forecasting or Prediction: Systematic Review. J. Med. Internet Res. 2023, 25, e40259.
- 75.
Lee, Y.B.; Kim, G.; Jun, J.E.; Park, H.; Lee, W.J.; Hwang, Y.C.; Kim, J.H. An Integrated Digital Health Care Platform for Diabetes Management with AI-Based Dietary Management: 48-Week Results From a Randomized Controlled Trial. Diabetes Care 2023, 46, 959–966.
- 76.
Huang, X.; Yao, C.; Huang, S.; Zheng, S.; Liu, Z.; Liu, J.; Wang, J.; Chen, H.J.; Xie, X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens. 2024, 9, 1065–1088.
- 77.
Dunn, J.; Kidzinski, L.; Runge, R.; Witt, D.; Hicks, J.L.; Schüssler-Fiorenza Rose, S.M.; Li, X.; Bahmani, A.; Delp, S.L.; Hastie, T.; et al. Wearable sensors enable personalized predictions of clinical laboratory measurements. Nat. Med. 2021, 27, 1105–1112.
- 78.
Schüssler-Fiorenza Rose, S.M.; Contrepois, K.; Moneghetti, K.J.; Zhou, W.; Mishra, T.; Mataraso, S.; Dagan-Rosenfeld, O.; Ganz, A.B.; Dunn, J.; Hornburg, D.; et al. A longitudinal big data approach for precision health. Nat. Med. 2019, 25, 792–804.
- 79.
Das, A.; Mortazavi, B.; Sajjadi, S.; Chaspari, T.; Ruebush, L.E.; Deutz, N.E.; Cote, G.L.; Gutierrez-Osuna, R. Predicting the Macronutrient Composition of Mixed Meals from Dietary Biomarkers in Blood. IEEE J. Biomed. Health Inform. 2022, 26, 2726–2736.
- 80.
McMichael, L.; Johnson, C.; Fanter, R.; Brito, A.; Alarcon, N.; Quintana-Diaz, A.; Schaffner, A.; Jelalian, E.; Wing, R.; Phelan, S.; et al. Identification of Potential Biomarkers for Early Prediction of Gestational Diabetes. Curr. Dev. Nutr. 2020, 4, nzaa049_038.
- 81.
Ismail, L.; Materwala, H. IDMPF: Intelligent diabetes mellitus prediction framework using machine learning. Appl. Comput. Inform. 2021, ahead-of-print.
- 82.
Dzakiyullah, N.R.; Burhanuddin, M.A.; Ikram, R.R.; Ghani, K.A.; Setyonugroho, W. Machine learning methods for diabetes prediction. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 2199–2205.
- 83.
Wang, X.; Liu, M.; Zhang, Y.; He, S.; Qin, C.; Li, Y.; Lu, T. Deep fusion learning facilitates anatomical therapeutic chemical recognition in drug repurposing and discovery. Brief. Bioinform. 2021, 22, bbab289.
- 84.
Alshammary, A.F.; Al-Hakeem, M.M.; Ali Khan, I. Saudi Community-Based Screening Study on Genetic Variants in β-Cell Dysfunction and Its Role in Women with Gestational Diabetes Mellitus. Genes 2023, 14, 924.
- 85.
Kim, H.; Westerman, K.E.; Smith, K.; Chiou, J.; Cole, J.B.; Majarian, T.; von Grotthuss, M.; Kwak, S.H.; Kim, J.; Mercader, J.M.; et al. High-throughput genetic clustering of type 2 diabetes loci reveals heterogeneous mechanistic pathways of metabolic disease. Diabetologia 2022, 66, 495–507.
- 86.
Madsen, F.M. The dawn of personalized multi-omics: Detecting disease before you know it. Glob. Transl. Med. 2024, 3, 2357.
- 87.
Fang, H.; E-Lacerda, R.R.; Schertzer, J.D. Obesity promotes a leaky gut, inflammation and pre-diabetes by lowering gut microbiota that metabolise ethanolamine. Gut 2023, 72, 1809–1811.
- 88.
Kolozali, Ş.; White, S.L.; Norris, S.; Fasli, M.; van Heerden, A. Explainable Early Prediction of Gestational Diabetes Biomarkers by Combining Medical Background and Wearable Devices: A Pilot Study with a Cohort Group in South Africa. IEEE J. Biomed. Health Inform. 2024, 28, 1860–1871.
- 89.
Tong, L.; Shi, W.; Isgut, M.; Zhong, Y.; Lais, P.; Gloster, L.; Sun, J.; Swain, A.; Giuste, F.; Wang, M.D. Integrating Multi-Omics Data with EHR for Precision Medicine Using Advanced Artificial Intelligence. IEEE Rev. Biomed. Eng. 2024, 17, 80–97.
- 90.
Diedisheim, M.; Pecquet, C.; Julla, J.B.; Carlier, A.; Potier, L.; Hartemann, A.; Jacqueminet, S.; Vidal-Trecan, T.; Gautier, J.F.; Dubois Laforgue, D.; et al. Prevalence and Description of the Skin Reactions Associated with Adhesives in Diabetes Technology Devices in an Adult Population: Results of the CUTADIAB Study. Diabetes Technol. Ther. 2023, 25, 279–286.
- 91.
Hong, Y.J.; Lee, H.; Kim, J.; Lee, M.; Choi, H.J.; Hyeon, T.; Kim, D.H. Multifunctional Wearable System that Integrates Sweat-Based Sensing and Vital-Sign Monitoring to Estimate Pre-/Post-Exercise Glucose Levels. Adv. Funct. Mater. 2018, 28, 1805754.
- 92.
Alam, M.M.; Howlader MM, R. High performance nonenzymatic electrochemical sensors via thermally grown Cu native oxides (CuNOx) towards sweat glucose monitoring. The Analyst 2024, 149, 712–728.
- 93.
Nakazawa, T.; Morishita, K.; Ienaka, A.; Fujii, T.; Ito, M.; Matsushita, F. Accuracy enhancement of metabolic index-based blood glucose estimation with a screening process for low-quality data. J. Biomed. Opt. 2024, 29, 107001.
- 94.
Babu, M.; Lautman, Z.; Lin, X.; Sobota MH, B.; Snyder, M.P. Wearable Devices: Implications for Precision Medicine and the Future of Health Care. Annu. Rev. Med. 2024, 75, 401–415.
- 95.
Marengo, L.L.; Barberato-Filho, S. Involvement of Human Volunteers in the Development and Evaluation of Wearable Devices Designed to Improve Medication Adherence: A Scoping Review. Sensors 2023, 23, 3597.
- 96.
Wettstein, R.; Sedaghat-Hamedani, F.; Heinze, O.; Amr, A.; Reich, C.; Betz, T.; Kayvanpour, E.; Merzweiler, A.; Büsch, C.; Mohr, I.; et al. A Remote Patient Monitoring System with Feedback Mechanisms Using a Smartwatch: Concept, Implementation, and Evaluation Based on the activeDCM Randomized Controlled Trial. JMIR MHealth UHealth 2024, 12, e58441.
- 97.
Dubosson, F.; Ranvier, J.E.; Bromuri, S.; Calbimonte, J.P.; Ruiz, J.; Schumacher, M. The open D1NAMO dataset: A multi-modal dataset for research on non-invasive type 1 diabetes management. Inform. Med. Unlocked 2018, 13, 92–100.
- 98.
Wang, J.; Coleman, D.C.; Kanter, J.; Ummer, B.; Siminerio, L. Connecting Smartphone and Wearable Fitness Tracker Data with a Nationally Used Electronic Health Record System for Diabetes Education to Facilitate Behavioral Goal Monitoring in Diabetes Care: Protocol for a Pragmatic Multi-Site Randomized Trial. JMIR Res. Protoc. 2018, 7, e10009.
- 99.
Parikh, V.; Mahmud, S.; Agarwal, D.; Li, K.; Guimbretière, F.; Zhang, C. EchoGuide: Active Acoustic Guidance for LLM-Based Eating Event Analysis from Egocentric Videos. In Proceedings of the Proceedings of the 2024 ACM International Symposium on Wearable Computers, Melbourne, VIC, Australia, 5–9 October 2024; pp. 40–47.
https://doi.org/10.1145/3675095.3676611.
- 100.
Xu, S.; Kim, J.; Walter, J.R.; Ghaffari, R.; Rogers, J.A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl. Med. 2022, 14, eabn6036.