- 1.
Zhong, L.; Krummenacher, C.; Zhang, W.; Hong, J.; Feng, Q.; Chen, Y.; Zhao, Q.; Zeng, M.S.; Zeng, Y.X.; Xu, M.; et al. Urgency and necessity of Epstein-Barr virus prophylactic vaccines. NPJ Vaccines 2022, 7, 159. https://doi.org/10.1038/s41541-022-00587-6.
- 2.
Odumade, O.A.; Hogquist, K.A.; Balfour, H.H., Jr. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin. Microbiol. Rev. 2011, 24, 193–209. https://doi.org/10.1128/CMR.00044-10.
- 3.
Damania, B.; Kenney, S.C.; Raab-Traub, N. Epstein-Barr virus: Biology and clinical disease. Cell 2022, 185, 3652–3670. https://doi.org/10.1016/j.cell.2022.08.026.
- 4.
Burton, E.M.; Goldbach-Mansky, R.; Bhaduri-McIntosh, S. A promiscuous inflammasome sparks replication of a common tumor virus. Proc. Natl. Acad. Sci. USA 2020, 117, 1722–1730. https://doi.org/10.1073/pnas.1919133117.
- 5.
Kraus, R.J.; Yu, X.; Cordes, B.A.; Sathiamoorthi, S.; Iempridee, T.; Nawandar, D.M.; Ma, S.; Romero-Masters, J.C.; McChesney, K.G.; Lin, Z.; et al. Hypoxia-inducible factor-1alpha plays roles in Epstein-Barr virus’s natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathog. 2017, 13, e1006404. https://doi.org/10.1371/journal.ppat.1006404.
- 6.
Laichalk, L.L.; Thorley-Lawson, D.A. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J. Virol. 2005, 79, 1296–1307. https://doi.org/10.1128/JVI.79.2.1296-1307.2005.
- 7.
Van Sciver, N.; Ohashi, M.; Pauly, N.P.; Bristol, J.A.; Nelson, S.E.; Johannsen, E.C.; Kenney, S.C. Hippo signaling effectors YAP and TAZ induce Epstein-Barr Virus (EBV) lytic reactivation through TEADs in epithelial cells. PLoS Pathog. 2021, 17, e1009783. https://doi.org/10.1371/journal.ppat.1009783.
- 8.
Liu, J.; Gao, H.; Xu, L.P.; Mo, X.D.; Liu, R.; Liang, S.; Wu, N.; Wang, M.; Wang, Z.; Chang, Y.J.; et al. Immunosuppressant indulges EBV reactivation and related lymphoproliferative disease by inhibiting Vdelta2(+) T cells activities after hematopoietic transplantation for blood malignancies. J. Immunother. Cancer 2020, 8, e000208. https://doi.org/10.1136/jitc-2019-000208.
- 9.
Hatayama, Y.; Hashimoto, Y.; Motokura, T. Frequent co-reactivation of Epstein-Barr virus in patients with cytomegalovirus viremia under immunosuppressive therapy and/or chemotherapy. J. Int. Med. Res. 2020, 48, 300060520972880. https://doi.org/10.1177/0300060520972880.
- 10.
Robinson, W.H.; Younis, S.; Love, Z.Z.; Steinman, L.; Lanz, T.V. Epstein-Barr virus as a potentiator of autoimmune diseases. Nat. Rev. Rheumatol. 2024, 20, 729–740. https://doi.org/10.1038/s41584-024-01167-9.
- 11.
Rahman, A.; Isenberg, D.A. Systemic lupus erythematosus. N. Engl. J. Med. 2008, 358, 929–939. https://doi.org/10.1056/NEJMra071297.
- 12.
Gao, S.; Yu, Z.; Ma, X.; Sun, J.; Ren, A.; Gao, S.; Gong, M.; Zhou, X.; Ma, M.; Song, H. Childhood-onset systemic lupus erythematosus in China, 2016–2021: A nationwide study. Lancet Child Adolesc. Health 2024, 8, 762–772. https://doi.org/10.1016/S2352-4642(24)00172-X.
- 13.
Evans, A.S.; Rothfield, N.F.; Niederman, J.C. Raised antibody titres to E.B. virus in systemic lupus erythematosus. Lancet 1971, 1, 167–168. https://doi.org/10.1016/s0140-6736(71)91937-4.
- 14.
James, J.A.; Kaufman, K.M.; Farris, A.D.; Taylor-Albert, E.; Lehman, T.J.; Harley, J.B. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J. Clin. Investig. 1997, 100, 3019–3026. https://doi.org/10.1172/JCI119856.
- 15.
James, J.A.; Neas, B.R.; Moser, K.L.; Hall, T.; Bruner, G.R.; Sestak, A.L.; Harley, J.B. Systemic lupus erythematosus in adults is associated with previous Epstein-Barr virus exposure. Arthritis Rheum. 2001, 44, 1122–1126. https://doi.org/10.1002/1529-0131(200105)44:5<1122::AID-ANR193>3.0.CO;2-D.
- 16.
Chen, C.J.; Lin, K.H.; Lin, S.C.; Tsai, W.C.; Yen, J.H.; Chang, S.J.; Lu, S.N.; Liu, H.W. High prevalence of immunoglobulin A antibody against Epstein-Barr virus capsid antigen in adult patients with lupus with disease flare: Case control studies. J. Rheumatol. 2005, 32, 44–47.
- 17.
Lau, C.S.; Yuen, K.Y.; Chan, K.H.; Wong, R.W. Lack of evidence of active lytic replication of Epstein-Barr and cytomegaloviruses in patients with systemic lupus erythematosus. Chin. Med. J. 1998, 111, 660–665.
- 18.
Kang, I.; Quan, T.; Nolasco, H.; Park, S.H.; Hong, M.S.; Crouch, J.; Pamer, E.G.; Howe, J.G.; Craft, J. Defective control of latent Epstein-Barr virus infection in systemic lupus erythematosus. J. Immunol. 2004, 172, 1287–1294. https://doi.org/10.4049/jimmunol.172.2.1287.
- 19.
Moon, U.Y.; Park, S.J.; Oh, S.T.; Kim, W.U.; Park, S.H.; Lee, S.H.; Cho, C.S.; Kim, H.Y.; Lee, W.K.; Lee, S.K. Patients with systemic lupus erythematosus have abnormally elevated Epstein-Barr virus load in blood. Arthritis Res. Ther. 2004, 6, R295–R302. https://doi.org/10.1186/ar1181.
- 20.
Tu, J.; Wang, X.; Geng, G.; Xue, X.; Lin, X.; Zhu, X.; Sun, L. The Possible Effect of B-Cell Epitopes of Epstein-Barr Virus Early Antigen, Membrane Antigen, Latent Membrane Protein-1, and -2A on Systemic Lupus Erythematosus. Front. Immunol. 2018, 9, 187. https://doi.org/10.3389/fimmu.2018.00187.
- 21.
Yadav, P.; Tran, H.; Ebegbe, R.; Gottlieb, P.; Wei, H.; Lewis, R.H.; Mumbey-Wafula, A.; Kaplan, A.; Kholdarova, E.; Spatz, L. Antibodies elicited in response to EBNA-1 may cross-react with dsDNA. PLoS ONE 2011, 6, e14488. https://doi.org/10.1371/journal.pone.0014488.
- 22.
Yadav, P.; Carr, M.T.; Yu, R.; Mumbey-Wafula, A.; Spatz, L.A. Mapping an epitope in EBNA-1 that is recognized by monoclonal antibodies to EBNA-1 that cross-react with dsDNA. Immun. Inflamm. Dis. 2016, 4, 362–375. https://doi.org/10.1002/iid3.119.
- 23.
Csorba, K.; Schirmbeck, L.A.; Tuncer, E.; Ribi, C.; Roux-Lombard, P.; Chizzolini, C.; Huynh-Do, U.; Vanhecke, D.; Trendelenburg, M. Anti-C1q Antibodies as Occurring in Systemic Lupus Erythematosus Could Be Induced by an Epstein-Barr Virus-Derived Antigenic Site. Front. Immunol. 2019, 10, 2619. https://doi.org/10.3389/fimmu.2019.02619.
- 24.
McClain, M.T.; Heinlen, L.D.; Dennis, G.J.; Roebuck, J.; Harley, J.B.; James, J.A. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med. 2005, 11, 85–89. https://doi.org/10.1038/nm1167.
- 25.
Sabbatini, A.; Bombardieri, S.; Migliorini, P. Autoantibodies from patients with systemic lupus erythematosus bind a shared sequence of SmD and Epstein-Barr virus-encoded nuclear antigen EBNA I. Eur. J. Immunol. 1993, 23, 1146–1152. https://doi.org/10.1002/eji.1830230525.
- 26.
James, J.A.; Gross, T.; Scofield, R.H.; Harley, J.B. Immunoglobulin epitope spreading and autoimmune disease after peptide immunization: Sm B/B’-derived PPPGMRPP and PPPGIRGP induce spliceosome autoimmunity. J. Exp. Med. 1995, 181, 453–461. https://doi.org/10.1084/jem.181.2.453.
- 27.
James, J.A.; Scofield, R.H.; Harley, J.B. Lupus humoral autoimmunity after short peptide immunization. Ann. N. Y. Acad. Sci. 1997, 815, 124–127. https://doi.org/10.1111/j.1749-6632.1997.tb52054.x.
- 28.
Sundar, K.; Jacques, S.; Gottlieb, P.; Villars, R.; Benito, M.E.; Taylor, D.K.; Spatz, L.A. Expression of the Epstein-Barr virus nuclear antigen-1 (EBNA-1) in the mouse can elicit the production of anti-dsDNA and anti-Sm antibodies. J. Autoimmun. 2004, 23, 127–140. https://doi.org/10.1016/j.jaut.2004.06.001.
- 29.
Rovin, B.H.; Furie, R.; Latinis, K.; Looney, R.J.; Fervenza, F.C.; Sanchez-Guerrero, J.; Maciuca, R.; Zhang, D.; Garg, J.P.; Brunetta, P.; et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012, 64, 1215–1226. https://doi.org/10.1002/art.34359.
- 30.
Mackensen, A.; Muller, F.; Mougiakakos, D.; Boltz, S.; Wilhelm, A.; Aigner, M.; Volkl, S.; Simon, D.; Kleyer, A.; Munoz, L.; et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. 2022, 28, 2124–2132. https://doi.org/10.1038/s41591-022-02017-5.
- 31.
Monaco, M.C.G.; Soldan, S.S.; Su, C.; Clauze, A.; Cooper, J.F.; Patel, R.J.; Lu, F.; Hughes, R.J.; Messick, T.E.; Andrada, F.C.; et al. EBNA1 Inhibitors Block Proliferation of Spontaneous Lymphoblastoid Cell Lines From Patients With Multiple Sclerosis and Healthy Controls. Neurol. Neuroimmunol. Neuroinflamm. 2023, 10, e200149. https://doi.org/10.1212/NXI.0000000000200149.