- 1.
Negrini,; Emmi, G.; Greco, M.; Borro, M.; Sardanelli, F.; Murdaca, G.; Indiveri, F.; Puppo, F. Sjögren’s syndrome: A systemic autoimmune disease. Clin. Exp. Med. 2022, 22, 9–25. https://doi.org/10.1007/s10238-021-00728-6.
- 2.
Sebastian,; Szachowicz, A.; Wiland, P. Classification criteria for secondary Sjögren’s syndrome. Current state of knowledge. Reumatologia 2019, 57, 277–280. https://doi.org/10.5114/reum.2019.89520.
- 3.
Tarn,R.; Howard-Tripp, N.; Lendrem, D.W.; Mariette, X.; Saraux, A.; Devauchelle-Pensec, V.; Seror, R.; Skelton, A.J.; James, K.; McMeekin, P.; et al. Symptom-based stratification of patients with primary Sjögren’s syndrome: Multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials. Lancet Rheumatol. 2019, 1, e85–e94. https://doi.org/10.1016/s2665-9913(19)30042-6.
- 4.
Brito-Zerón,; Baldini, C.; Bootsma, H.; Bowman, S.J.; Jonsson, R.; Mariette, X.; Sivils, K.; Theander, E.; Tzioufas, A.; Ramos-Casals, M. Sjögren syndrome. Nat. Rev. Dis. Primers 2016, 2, 16047. https://doi.org/10.1038/nrdp.2016.47.
- 5.
Taylor,E.; Wong, Q.; Levine, D.M.; McHugh, C.; Laurie, C.; Doheny, K.; Lam, M.Y.; Baer, A.N.; Challacombe, S.; Lanfranchi, H.; et al. Genome-Wide Association Analysis Reveals Genetic Heterogeneity of Sjogren’s Syndrome According to Ancestry. Arthritis Rheumatol. 2017, 69, 1294–1305. https://doi.org/10.1002/art.40040.
- 6.
Ramos-Casals,; Tzioufas, A.G.; Stone, J.H.; Sisó, A.; Bosch, X. Treatment of primary Sjögren syndrome: A systematic review. JAMA 2010, 304, 452–460. https://doi.org/10.1001/jama.2010.1014.
- 7.
Vitali,; Minniti, A.; Pignataro, F.; Maglione, W.; Del Papa, N. Management of Sjögren’s Syndrome: Present Issues and Future Perspectives. Front. Med. 2021, 8, 676885. https://doi.org/10.3389/fmed.2021.676885.
- 8.
Qi,; Tian, J.; Wang, G.; Yan, Y.; Wang, T.; Wei, Y.; Wang, Z.; Zhang, G.; Zhang, Y.; Wang, J. Advances in cellular and molecular pathways of salivary gland damage in Sjogren’s syndrome. Front. Immunol. 2024, 15, 1405126. https://doi.org/10.3389/fimmu.2024.1405126.
- 9.
Rizzo,; Grasso, G.; Destro Castaniti, G.M.; Ciccia, F.; Guggino, G. Primary Sjogren Syndrome: Focus on Innate Immune Cells and Inflammation. Vaccines 2020, 8, 272. https://doi.org/10.3390/vaccines8020272.
- 10.
Carapito,; Gottenberg, J.-E.; Kotova, I.; Untrau, M.; Michel, S.; Naegely, L.; Aouadi, I.; Kwemou, M.; Paul, N.; Pichot, A.; et al. A new MHC-linked susceptibility locus for primary Sjögren’s syndrome: MICA. Hum. Mol. Genet. 2017, 26, 2565–2576. https://doi.org/10.1093/hmg/ddx135.
- 11.
Nocturne,; Mariette, X. B cells in the pathogenesis of primary Sjögren syndrome. Nat. Rev. Rheumatol. 2018, 14, 133–145. https://doi.org/10.1038/nrrheum.2018.1.
- 12.
Altan-Bonnet,; Mukherjee, R. Cytokine-mediated communication: A quantitative appraisal of immune complexity. Nat. Rev. Immunol. 2019, 19, 205–217. https://doi.org/10.1038/s41577-019-0131-x.
- 13.
Patel,H.; Leone, R.D.; Horton, M.R.; Powell, J.D. Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat. Rev. Drug Discov. 2019, 18, 669–688. https://doi.org/10.1038/s41573-019-0032-5.
- 14.
Pringle,; Wang, X.; Verstappen, G.; Terpstra, J.H.; Zhang, C.K.; He, A.; Patel, V.; Jones, R.E.; Baird, D.M.; Spijkervet, F.K.L.; et al. Salivary Gland Stem Cells Age Prematurely in Primary Sjögren’s Syndrome. Arthritis Rheumatol. 2019, 71, 133–142. https://doi.org/10.1002/art.40659.
- 15.
Dalskov,; Gad, H.H.; Hartmann, R. Viral recognition and the antiviral interferon response. EMBO J. 2023, 42, e112907. https://doi.org/10.15252/embj.2022112907.
- 16.
Soret,; Le Dantec, C.; Desvaux, E.; Foulquier, N.; Chassagnol, B.; Hubert, S.; Jamin, C.; Barturen, G.; Desachy, G.; Devauchelle-Pensec, V.; et al. A new molecular classification to drive precision treatment strategies in primary Sjögren’s syndrome. Nat. Commun. 2021, 12, 3523. https://doi.org/10.1038/s41467-021-23472-7.
- 17.
Liu,; Yang, Y.; Zeng, L.; Wang, L.; He, C.; Chen, Z.; Sun, J.; Lyu, T.; Wang, M.; Chen, H.; et al. TOX promotes follicular helper T cell differentiation in patients with primary Sjögren’s syndrome. Rheumatology 2023, 62, 946–957. https://doi.org/10.1093/rheumatology/keac304.
- 18.
Chao,C.; Lin, C.H.; Liao, T.L.; Chen, Y.M.; Chen, D.Y.; Chen, H.H. Association between a history of mycobacterial infection and the risk of newly diagnosed Sjögren’s syndrome: A nationwide, population-based case-control study. PLoS ONE 2017, 12, e0176549. https://doi.org/10.1371/journal.pone.0176549.
- 19.
Silva,M.; Alves, C.E.C.; Pontes, G.S. Epstein-Barr virus: The mastermind of immune chaos. Front. Immunol. 2024, 15, 1297994. https://doi.org/10.3389/fimmu.2024.1297994.
- 20.
Kwok,K.; Lee, J.; Yu, D.; Kang, K.Y.; Cho, M.L.; Kim, H.R.; Ju, J.H.; Lee, S.H.; Park, S.H.; Kim, H.Y. A pathogenetic role for IL-21 in primary Sjögren syndrome. Nat. Rev. Rheumatol. 2015, 11, 368–374. https://doi.org/10.1038/nrrheum.2014.225.
- 21.
Nocturne,; Mariette, X. Advances in understanding the pathogenesis of primary Sjögren’s syndrome. Nat. Rev. Rheumatol. 2013, 9, 544–556. https://doi.org/10.1038/nrrheum.2013.110.
- 22.
Zhan,; Zhang, J.; Lin, Y.; Chen, W.; Fan, X.; Zhang, D. Pathogenesis and treatment of Sjogren’s syndrome: Review and update. Front. Immunol. 2023, 14, 1127417. https://doi.org/10.3389/fimmu.2023.1127417.
- 23.
Thorlacius,E.; Björk, A.; Wahren-Herlenius, M. Genetics and epigenetics of primary Sjögren syndrome: Implications for future therapies. Nat. Rev. Rheumatol. 2023, 19, 288–306. https://doi.org/10.1038/s41584-023-00932-6.
- 24.
Zhao,; Jin, S.; Wang, S.; Zhang, Z.; Wang, X.; Chen, Z.; Wang, X.; Huang, S.; Zhang, D.; Wu, H. Tertiary lymphoid structures in diseases: Immune mechanisms and therapeutic advances. Signal Transduct. Target. Ther. 2024, 9, 225. https://doi.org/10.1038/s41392-024-01947-5.
- 25.
Dong,; Wang, T.; Wu, H. Tertiary lymphoid structures in autoimmune diseases. Front. Immunol. 2023, 14, 1322035. https://doi.org/10.3389/fimmu.2023.1322035.
- 26.
Nayar,; Campos, J.; Smith, C.G.; Iannizzotto, V.; Gardner, D.H.; Mourcin, F.; Roulois, D.; Turner, J.; Sylvestre, M.; Asam, S.; et al. Immunofibroblasts are pivotal drivers of tertiary lymphoid structure formation and local pathology. Proc. Natl. Acad. Sci. USA 2019, 116, 13490–13497. https://doi.org/10.1073/pnas.1905301116.
- 27.
Elkon,; Casali, P. Nature and functions of autoantibodies. Nat. Clin. Pract. Rheumatol. 2008, 4, 491–498. https://doi.org/10.1038/ncprheum0895.
- 28.
Du,; Han, M.; Zhu, X.; Xiao, F.; Huang, E.; Che, N.; Tang, X.; Zou, H.; Jiang, Q.; Lu, L. The Multiple Roles of B Cells in the Pathogenesis of Sjögren’s Syndrome. Front. Immunol. 2021, 12, 684999. https://doi.org/10.3389/fimmu.2021.684999.
- 29.
Verstappen,M.; Pringle, S.; Bootsma, H.; Kroese, F.G.M. Epithelial-immune cell interplay in primary Sjögren syndrome salivary gland pathogenesis. Nat. Rev. Rheumatol. 2021, 17, 333–348. https://doi.org/10.1038/s41584-021-00605-2.
- 30.
Birnbaum,; Hoke, A.; Lalji, A.; Calabresi, P.; Bhargava, P.; Casciola-Rosen, L. Brief Report: Anti-Calponin 3 Autoantibodies: A Newly Identified Specificity in Patients With Sjögren’s Syndrome. Arthritis Rheumatol. 2018, 70, 1610–1616. https://doi.org/10.1002/art.40550.
- 31.
Soto-Heredero,; Gómez de Las Heras, M.M.; Gabandé-Rodríguez, E.; Oller, J.; Mittelbrunn, M. Glycolysis—A key player in the inflammatory response. FEBS J. 2020, 287, 3350–3369. https://doi.org/10.1111/febs.15327.
- 32.
Byersdorfer,A. The role of Fatty Acid oxidation in the metabolic reprograming of activated t-cells. Front. Immunol. 2014, 5, 641. https://doi.org/10.3389/fimmu.2014.00641.
- 33.
DeBerardinis,J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metab. 2008, 7, 11–20. https://doi.org/10.1016/j.cmet.2007.10.002.
- 34.
Desdín-Micó,; Soto-Heredero, G.; Mittelbrunn, M. Mitochondrial activity in T cells. Mitochondrion 2018, 41, 51–57. https://doi.org/10.1016/j.mito.2017.10.006.
- 35.
Williams,C.; O’Neill, L.A.J. A Role for the Krebs Cycle Intermediate Citrate in Metabolic Reprogramming in Innate Immunity and Inflammation. Front. Immunol. 2018, 9, 141. https://doi.org/10.3389/fimmu.2018.00141.
- 36.
Cruzat,; Macedo Rogero, M.; Noel Keane, K.; Curi, R.; Newsholme, P. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients 2018, 10, 1564. https://doi.org/10.3390/nu10111564.
- 37.
Yu,; Wang, Z.; Zhang, K.; Chi, Z.; Xu, T.; Jiang, D.; Chen, S.; Li, W.; Yang, X.; Zhang, X.; et al. One-Carbon Metabolism Supports S-Adenosylmethionine and Histone Methylation to Drive Inflammatory Macrophages. Mol. Cell 2019, 75, 1147–1160.e1145. https://doi.org/10.1016/j.molcel.2019.06.039.
- 38.
Wu,; Yang, M.; Gaur, U.; Xu, H.; Yao, Y.; Li, D. Alpha-Ketoglutarate: Physiological Functions and Applications. Biomol. Ther. 2016, 24, 1–8. https://doi.org/10.4062/biomolther.2015.078.
- 39.
Zhang,; Sheng, Q.; Zhao, N.; Huang, S.; Zhao, Y. DNA hypomethylation mediates immune response in pan-cancer. Epigenetics 2023, 18, 2192894. https://doi.org/10.1080/15592294.2023.2192894.
- 40.
Renaudineau,; Ballestar, E. Epigenetics: DNA methylation signatures in Sjögren syndrome. Nat. Rev. Rheumatol. 2016, 12, 565–566. https://doi.org/10.1038/nrrheum.2016.144.
- 41.
Miceli-Richard,; Wang-Renault, S.F.; Boudaoud, S.; Busato, F.; Lallemand, C.; Bethune, K.; Belkhir, R.; Nocturne, G.; Mariette, X.; Tost, J. Overlap between differentially methylated DNA regions in blood B lymphocytes and genetic at-risk loci in primary Sjögren’s syndrome. Ann. Rheum. Dis. 2016, 75, 933–940. https://doi.org/10.1136/annrheumdis-2014-206998.
- 42.
Wang,; Riaz, F.; Wang, W.; Pu, J.; Liang, Y.; Wu, Z.; Pan, S.; Song, J.; Yang, L.; Zhang, Y.; et al. Functional significance of DNA methylation: Epigenetic insights into Sjogren’s syndrome. Front. Immunol. 2024, 15, 1289492. https://doi.org/10.3389/fimmu.2024.1289492.
- 43.
Wieczorek,; Bigaud, M.; Pfister, S.; Ceci, M.; McMichael, K.; Afatsawo, C.; Hamburger, M.; Texier, C.; Henry, M.; Cojean, C.; et al. Blockade of CD40-CD154 pathway interactions suppresses ectopic lymphoid structures and inhibits pathology in the NOD/ShiLtJ mouse model of Sjögren’s syndrome. Ann. Rheum. Dis. 2019, 78, 974–978. https://doi.org/10.1136/annrheumdis-2018-213929.
- 44.
Fisher,A.; Szanto, A.; Ng, W.F.; Bombardieri, M.; Posch, M.G.; Papas, A.S.; Farag, A.M.; Daikeler, T.; Bannert, B.; Kyburz, D.; et al. Assessment of the anti-CD40 antibody iscalimab in patients with primary Sjögren’s syndrome: A multicentre, randomised, double-blind, placebo-controlled, proof-of-concept study. Lancet Rheumatol. 2020, 2, e142–e152. https://doi.org/10.1016/s2665-9913(19)30135-3.
- 45.
Saraux,; Pers, J.O.; Devauchelle-Pensec, V. Treatment of primary Sjögren syndrome. Nat. Rev. Rheumatol. 2016, 12, 456–471. https://doi.org/10.1038/nrrheum.2016.100.
- 46.
Mathews,A.; Kurien, B.T.; Scofield, R.H. Oral manifestations of Sjögren’s syndrome. J. Dent. Res. 2008, 87, 308–318. https://doi.org/10.1177/154405910808700411.
- 47.
Fana,; Dohn, U.M.; Krabbe, S.; Terslev, L. Application of the OMERACT Grey-scale Ultrasound Scoring System for salivary glands in a single-centre cohort of patients with suspected Sjögren’s syndrome. RMD Open 2021, 7, e001516. https://doi.org/10.1136/rmdopen-2020-001516.
- 48.
Ramos-Casals,; Brito-Zerón, P.; Bombardieri, S.; Bootsma, H.; De Vita, S.; Dörner, T.; Fisher, B.A.; Gottenberg, J.E.; Hernandez-Molina, G.; Kocher, A.; et al. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Ann. Rheum. Dis. 2020, 79, 3–18. https://doi.org/10.1136/annrheumdis-2019-216114.
- 49.
Misuno,; Tran, S.D.; Khalili, S.; Huang, J.; Liu, Y.; Hu, S. Quantitative analysis of protein and gene expression in salivary glands of Sjogren’s-like disease NOD mice treated by bone marrow soup. PLoS ONE 2014, 9, e87158. https://doi.org/10.1371/journal.pone.0087158.
- 50.
Tran,D.; Liu, Y.; Xia, D.; Maria, O.M.; Khalili, S.; Wang, R.W.; Quan, V.H.; Hu, S.; Seuntjens, J. Paracrine effects of bone marrow soup restore organ function, regeneration, and repair in salivary glands damaged by irradiation. PLoS ONE 2013, 8, e61632. https://doi.org/10.1371/journal.pone.0061632.
- 51.
Baldini,; Fulvio, G.; La Rocca, G.; Ferro, F. Update on the pathophysiology and treatment of primary Sjögren syndrome. Nat. Rev. Rheumatol. 2024, 20, 473–491. https://doi.org/10.1038/s41584-024-01135-3.
- 52.
Seror,; Nocturne, G.; Mariette, X. Current and future therapies for primary Sjögren syndrome. Nat. Rev. Rheumatol. 2021, 17, 475–486. https://doi.org/10.1038/s41584-021-00634-x.