- 1.
Shmeeda, H.; Mak, L.; Tzemach, D.; Astrahan, P.; Tarshish, M.; Gabizon, A. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol. Cancer Ther. 2006, 5, 818–824.
- 2.
Rouault, H.; Hakim, V. Different cell fates from cell-cell interactions: Core architectures of two-cell bistable networks. Biophys. J. 2012, 102, 417–426.
- 3.
Monge, P.; Søgaard, A.B.; Andersen, D.G.; Chandrawati, R.; Zelikin, A.N.. Synthetic chemical ligands and cognate antibodies for biorthogonal drug targeting and cell engineering. Adv. Drug Deliv. Rev. 2021, 170, 281–293.
- 4.
Guryanov, I.; Fiorucci, S.; Tennikova, T. Receptor-ligand interactions: Advanced biomedical applications. Mat. Sci. Eng. C 2016, 68, 890–903.
- 5.
Angata, T.; Varki, A. Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem. Rev. 2002, 102, 439–469.
- 6.
Prescher, J.A.; Dube, D.H.; Bertozzi, C.R. Chemical remodelling of cell surfaces in living animals. Nature 2004, 430, 873–877.
- 7.
Wang, H.M.; Mooney, D.J. Metabolic glycan labelling for cancer-targeted therapy. Nat. Chem. 2020, 12, 1102–1114.
- 8.
Kufleitner, M.; Haiber, L.M.; Wittmann, V. Metabolic glycoengineering—exploring glycosylation with bioorthogonal chemistry. Chem. Soc. Rev. 2023, 52, 510–535.
- 9.
Ai, X.; Lyu, L.; Zhang, Y.; Rong, J.; Chen, X. Remote regulation of membrane channel activity by site-specific localization of lanthanid-doped upconversion nanocrystals. Angew. Chem. Int. Ed. 2017, 56, 3031–3035.
- 10.
Agatemor, C.; Buettner, M.J.; Ariss, R.; Muthiah, K.; Saeui, C.T.; Yarema, K.J. Exploiting metabolic glycoengineering to advance healthcare. Nat. Rev. Chem. 2019, 3, 605–620.
- 11.
Sletten, E.M.; Bertozzi, C.R. Bioorthogonal Chemistry: Fishing for Selectivity in a Sea of Functionality. Angew. Chem. Int. Ed. 2009, 48, 6974–6998.
- 12.
Hu, M.; Han, Q.; Lyu, L.; Tong, Y.; Dong, S.; Loh, Z.H.; Xing, B. Luminescent molecules towards precise cellular event regulation. Chem. Commun. 2020, 56, 10231–10234.
- 13.
Droujinine, I.A.; Meyer, A.S.; Wang, D.; Udeshi, N.D.; Hu, Y.; Rocco, D.; Perrimon, N. Proteomics of protein trafficking by in vivo tissue-specific labeling. Nat. Commun. 2021, 12, 2382.
- 14.
Sampathkumar, S.G.; Li, A.V.; Jones, M.B.; Sun, Z.; Yarema, K.J. Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology. Nat. Chem. Biol. 2006, 2, 149–152. https://doi.org/10.1038/nchembio770.
- 15.
Saxon, E.; Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 2000, 287, 2007–2010.
- 16.
Hong, S.; Sahai-Hernandez, P.; Chapla, D.G.; Moremen, K.W.; Traver, D.; Wu, P. Direct Visualization of Live Zebrafish Glycans via Single-Step Metabolic Labeling with Fluorophore-Tagged Nucleotide Sugars. Angew. Chem. Int. Ed. 2019, 58, 14327–14333.
- 17.
Xie, R.; Hong, S.; Feng, L.; Rong, J.; Chen, X. Cell-selective metabolic glycan labeling based on ligand-targeted liposomes. J. Am. Chem. Soc. 2012, 134, 9914.
- 18.
Xie, R.; Dong, L.; Huang, R.; Hong, S.; Lei, R.; Chen, X. Targeted imaging and proteomic analysis of tumor-associated glycans in living animals. Angew. Chem. Int. Ed. 2014, 53, 14082–14086.
- 19.
BDebets, M.F. Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation. Proc. Nat. Acad. Sci. USA 2020, 117, 25293–25301.
- 20.
Cioce, A.; Calle, B.; Rizou, T.; Lowery, S.C.; Bridgeman, V.L.; Mahoney, K.E.; Schumann, B. Cell-specific bioorthogonal tagging of glycoproteins. Nat. Commun. 2022, 12, 6237.
- 21.
Wang, H.; Sobral, M.C.; Zhang, D.K.; Cartwright, A.N.; Li, A.W.; Dellacherie, M.O.; Mooney, D.J. Metabolic labeling and targeted modulation of dendritic cells. Nat. Mater. 2020, 19, 1244–1252.
- 22.
Wang, H.; Gauthier, M.; Kelly, J.R.; Xu, M.; O’Brien, W.D., Jr.; Cheng, J. Targeted ultrasound-assisted cancer-selective chemical labeling and subsequent cancer imaging using click chemistry. Angewandte Chemie International Edition. Angew. Chem. Int. Ed. 2016, 55, 5452–5456.
- 23.
Wang, R.; Cai, K.; Wang, H.; Yin, C.; Cheng, J. A caged metabolic precursor for DT-diaphorase- responsive cell labeling. Chem. Commun. 2018, 54, 4878–4881.
- 24.
Wang, H.; Wang, R.; Cai, K.; He, H.; Liu, Y.; Yen, J.; Cheng, J. selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat. Chem. Biol. 2017, 13, 415–424.
- 25.
Wang, Z.; Lau, J.W.; Liu, S.; Ren, Z.; Gong, Z.; Liu, X.; Xing, B. A Nitroreductase-Activatable Metabolic Reporter for Covalent Labeling of Pathological Hypoxic Cells in Tumorigenesis. Angew. Chem. Int. Ed. 2024, 136, e202411636.
- 26.
Shim, M.K.; Yoon, H.Y.; Ryu, J.H.; Koo, H.; Lee, S.; Park, J.H.; Kim, K. Cathepsin B-specific metabolic precursor for in vivo tumor-specific fluorescence imaging. Angew. Chem. Int. Ed. 2016, 55, 14698–14703.
- 27.
Rillahan, C.D.; Macauley, M.S.; Schwartz, E.; He, Y.; McBride, R.; Arlian, B.M.; Paulson, J.C. Disubstituted sialic acid ligands targeting siglecs CD33 and CD22 associated with myeloid leukaemias and B cell lymphomas. Chem. Sci. 2014, 5, 2398–2406.
- 28.
Wang, X.; Luo, X.; Tian, Y.; Wu, T.; Weng, J.; Li, Z.; Huang, X. Equipping Natural Killer Cells with Cetuximab through Metabolic Glycoengineering and Bioorthogonal Reaction for Targeted Treatment of KRAS Mutant Colorectal Cancer. ACS Chem. Biol. 2012, 16, 724–730.
- 29.
Wang, X.; Lang, S.; Tian, Y.; Zhang, J.; Yan, X.; Fang, Z.; Huang, X. Glycoengineering of natural killer cells with CD22 ligands for enhanced anticancer immunotherapy. ACS Cent. Sci. 2020, 6, 382–389.
- 30.
Han, S.; Collins, B.E.; Bengtson, P.; Paulson, J.C. Homomultimeric complexes of CD22 in B cells revealed by protein-glycan cross-linking. Nat. Chem. Biol. 2005, 1, 93–97. https://doi.org/10.1038/nchembio713.
- 31.
Lin, B.; Wu, X.; Zhao, H.; Tian, Y.; Han, J.; Liu, J.; Han, S. Redirecting immunity via covalently incorporated immunogenic sialic acid on the tumor cell surface. Chem. Sci. 2016, 7, 3737.
- 32.
Olson, W.C.; Heston, W.D.; Rajasekaran, A.K. Clinical trials of cancer therapies targeting prostate-specific membrane antigen. Rev. Recent Clin. Trials 2007, 2, 182–190.
- 33.
Cawley, N.X.; Wetsel, W.C.; Murthy, S.R.K.; Park, J.J.; Pacak, K.; Loh, Y.P. New roles of carboxypeptidase E in endocrine and neural function and cancer. Endocr. Rev. 2012, 33, 216–153.
- 34.
DiJoseph, J.F.; Dougher, M.M.; Armellino, D.C.; Evans, D.Y.; Damle, N.K. Therapeutic potential of CD22- specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia 2007, 21, 2240–2245.
- 35.
Kreitman, R.J.; Margulies, I.; Stetler-Stevenson, M.; Wang, Q.C.; FitzGerald, D.J.; Pastan, I. Cytotoxic activity of disulfide-stabilized recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) toward fresh malignant cells from patients with B-cell leukemias. Clin. Cancer Res. 2000, 6, 1476–1487.
- 36.
Kreitman, R.J.; Wilson, W.H.; Bergeron, K.; Raggio, M.; Stetler-Stevenson, M.; FitzGerald, D.J.; Pastan, I. Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N. Engl. J. Med. 2001, 345, 241–247.
- 37.
Fry, T.J.; Shah, N.N.; Orentas, R.J.; Stetler-Stevenson, M.; Yuan, C.M.; Ramakrishna, S.; Mackall, C.L. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018, 24, 20–28.
- 38.
Ramakrishna, S.; Highfill, S.L.; Walsh, Z.; Nguyen, S.M.; Lei, H.; Shern, J.F.; Fry, T.J. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin. Cancer Res. 2019, 25, 5329–5341.
- 39.
Zhang, Y.; Gallastegui, N.; Rosenblatt, J.D. Regulatory B cells in anti-tumor immunity. Int. Immunol. 2015, 27, 521–530.
- 40.
Qin, Y.; Lu, F.; Lyu, K.; Chang, A.E.; Li, Q. Emerging concepts regarding pro-and anti tumor properties of B cells in tumor immunity. Front. Immunol. 2022, 13, 881427.
- 41.
Sarvaria, A.; Madrigal, J.A.; Saudemont, A. B cell regulation in cancer and anti-tumor immunity. Cellular & molecular immunology. Cell. Mol. Immunol. 2017, 14, 662–674.
- 42.
Wang, S.S.; Liu, W.; Ly, D.; Xu, H.; Qu, L.; Zhang, L. Tumor-infiltrating B cells: Their role and application in anti-tumor immunity in lung cancer. Cell. Mol. Immunol. 2019, 16, 6–18.
- 43.
Kinoshita, Y.; Sato, S.; Takeuchi, T. Cellular sialic acid level and phenotypic expression in B16 melanoma cells: Comparison of spontaneous variations and bromodeoxyuridine and theophylline-induced changes. Cell Struct. Funct. 1989, 14, 35–43.
- 44.
Wieboldt, R.; Sandholzer, M.; Carlini, E.; Lin, C.W.; Börsch, A.; Zingg, A.; Mantuano, N.R. Engagement of sialylated glycans with Siglec receptors on suppressive myeloid cells inhibits anticancer immunity via CCL2. Cell Mol. Immunol. 2024, 21, 495–509.
- 45.
Kang, J.; Sun, M.; Chang, Y.; Chen, H.; Zhang, J.; Liang, X.; Xiao, T. Butyrate ameliorates colorectal cancer through regulating intestinal microecological disorders. Anti-Cancer Drugs 2023, 34, 227–237.
- 46.
Li, Y.; He, P.; Chen, Y.; Hu, J.; Deng, B.; Liu, C.; Dong, W. Microbial metabolite sodium butyrate enhances the anti-tumor efficacy of 5-fluorouracil against colorectal cancer by modulating PINK1/Parkin signaling and intestinal flora. Sci. Rep. 2024, 14, 13063.
- 47.
Archer, S.Y.; Meng, S.; Shei, A.; Hodin, R.A. p21WAF1 is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl. Acad. Sci. USA 1998, 95, 6791–6796.
- 48.
Kruh, J. Effects of sodium butyrate, a new pharmacological agent, on cells in culture. Mol. Cell Biochem. 1981, 42, 65–82.
- 49.
Chen, W.C.; Completo, G.C.; Sigal, D.S.; Crocker, P.R.; Saven, A.; Paulson, J.C. In vivo targeting of B-cell lymphoma with glycan ligands of CD22. Blood 2010, 115, 4778–4786.
- 50.
Zaccai, N.R.; Maenaka, K.; Maenaka, T.; Crocker, P.R.; Brossmer, R.; Kelm, S.; Jones, E.Y. Structure-guided design of sialic acid-based Siglec inhibitors and crystallographic analysis in complex with sialoadhesin. Structure 2003, 11, 557–567.
- 51.
Kelm, S.; Gerlach, J.; Brossmer, R.; Danzer, C.P.; Nitschke, L. The ligand-binding domain of CD22 is needed for inhibition of the B cell receptor signal, as demonstrated by a novel human CD22-specific inhibitor compound. J. Exp. Med. 2002, 195, 1207–1213.
- 52.
Büll, C.; Boltje, T.J.; Wassink, M.; de Graaf, A.M.; van Delft, F.L.; den Brok, M.H.; Adema, G.J. Targeting aberrant sialylation in cancer cells using a fluorinated sialic acid analog impairs adhesion, migration, and in vivo tumor growth. Molecular cancer therapeutics. Mol. Cancer Ther. 2013, 12, 1935–1946.
- 53.
Rodrigues, E.; Macauley, M. Hypersialylation in Cancer: Modulation of Inflammation and Therapeutic Opportunities. Cancers 2018, 10, 207.
- 54.
Pearce, O.M.; Läubli, H. Sialic acids in cancer biology and immunity. Glycobiology 2015, 26, 111–128.
- 55.
Hudak, J.E.; Canham, S.M.; Bertozzi, C.R. Glycocalyx engineering reveals a Siglec-based mechanism for NK cell immunoevasion. Nat. Chem. Biol. 2014, 10, 69–75.
- 56.
O’Reilly, M.K.; Paulson, J.C. Siglecs as targets for therapy in immune-cell-mediated disease. Trends in pharmacological sciences. Trends Pharmacol. Sci. 2009, 30, 240–248.
- 57.
Jakobsche, C.E.; Parker, C.G.; Tao, R.N.; Kolesnikova, M.D.; Douglass, E.F., Jr.; Spiegel, D.A. Exploring binding and effector functions of natural human antibodies using synthetic immunomodulators. ACS Chem. Biol. 2013, 8, 2404–2411. https://doi.org/10.1021/cb4004942.
- 58.
Murelli, R.P.; Zhang, A.X.; Michel, J.; Jorgensen, W.L.; Spiegel, D.A. Chemical control over immune recognition: A class of antibody-recruiting small molecules that target prostate cancer. J. Am. Chem. Soc. 2009, 131, 17090–17092. https://doi.org/10.1021/ja906844e.
- 59.
Parker, C.G.; Domaoal, R.A.; Anderson, K.S.; Spiegel, D.A. An antibody-recruiting small molecule that targets HIV gp120. J. Am. Chem. Soc. 2009, 131, 16392–16394. https://doi.org/10.1021/ja9057647.
- 60.
Fura, J.M.; Sabulski, M.J.; Pires, M.M. D-amino acid mediated recruitment of endogenous antibodies to bacterial surfaces. ACS Chem. Biol. 2014, 9, 1480–1489. https://doi.org/10.1021/cb5002685.
- 61.
Cheadle, E.J.; Gornall, H.; Baldan, V.; Hanson, V.; Hawkins, R.E.; Gilham, D.E. CAR T cells: Driving the road from the laboratory to the clinic. Immunol. Rev. 2014, 257, 91–106. https://doi.org/10.1111/imr.12126.
- 62.
Tomayko, M.M.; Reynolds, C.P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 1989, 24, 148–154.