- 1.
Lan, T.; Zhang, J.; Lu, Y. Transforming the Blood Glucose Meter into a General Healthcare Meter for in Vitro Diagnostics in Mobile Health. Biotechnol. Adv. 2016, 34, 331–341. https://doi.org/10.1016/j.biotechadv.2016.03.002.
- 2.
Duan, H.; Peng, S.; He, S.; Tang, S.; Goda, K.; Wang, C.H.; Li, M. Wearable Electrochemical Biosensors for Advanced Healthcare Monitoring. Adv. Sci. 2024, 12, 2411433. https://doi.org/10.1002/advs.202411433.
- 3.
Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing Populations: The Challenges Ahead. Lancet Lond. Engl. 2009, 374, 1196–1208. https://doi.org/10.1016/S0140-6736(09)61460-4.
- 4.
Chen, X.; Giles, J.; Yao, Y.; Yip, W.; Meng, Q.; Berkman, L.; Chen, H.; Chen, X.; Feng, J.; Feng, Z.; et al. The Path to Healthy Ageing in China: A Peking University–Lancet Commission. Lancet 2022, 400, 1967–2006. https://doi.org/10.1016/S0140-6736(22)01546-X.
- 5.
Beard, J.R.; Officer, A.; de Carvalho, I.A.; Sadana, R.; Pot, A.M.; Michel, J.-P.; Lloyd-Sherlock, P.; Epping-Jordan, J.E.; Peeters, G.M.E.E.G.; Mahanani, W.R.; et al. The World Report on Ageing and Health: A Policy Framework for Healthy Ageing. Lancet Lond. Engl. 2016, 387, 2145–2154. https://doi.org/10.1016/S0140-6736(15)00516-4.
- 6.
Ge, Y.; Taha, A.; Shah, S.A.; Dashtipour, K.; Zhu, S.; Cooper, J.; Abbasi, Q.H.; Imran, M.A. Contactless WiFi Sensing and Monitoring for Future Healthcare—Emerging Trends, Challenges, and Opportunities. IEEE Rev. Biomed. Eng. 2023, 16, 171–191. https://doi.org/10.1109/RBME.2022.3156810.
- 7.
Iqbal, S.M.A.; Mahgoub, I.; Du, E.; Leavitt, M.A.; Asghar, W. Advances in Healthcare Wearable Devices. Npj Flex. Electron. 2021, 5, 9. https://doi.org/10.1038/s41528-021-00107-x.
- 8.
Babu, M.; Lautman, Z.; Lin, X.; Sobota, M.H.B.; Snyder, M.P. Wearable Devices: Implications for Precision Medicine and the Future of Health Care. Annu. Rev. Med. 2024, 75, 401–415. https://doi.org/10.1146/annurev-med-052422-020437.
- 9.
Tu, J.; Min, J.; Song, Y.; Xu, C.; Li, J.; Moore, J.; Hanson, J.; Hu, E.; Parimon, T.; Wang, T.-Y.; et al. A Wireless Patch for the Monitoring of C-Reactive Protein in Sweat. Nat. Biomed. Eng. 2023, 7, 1293–1306. https://doi.org/10.1038/s41551-023-01059-5.
- 10.
Lin, T.; Xu, Y.; Zhao, A.; He, W.; Xiao, F. Flexible Electrochemical Sensors Integrated with Nanomaterials for in Situ Determination of Small Molecules in Biological Samples: A Review. Anal. Chim. Acta 2022, 1207, 339461. https://doi.org/10.1016/j.aca.2022.339461.
- 11.
Pang, Y.; Yang, Z.; Yang, Y.; Ren, T. Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. Small 2020, 16, 1901124. https://doi.org/10.1002/smll.201901124.
- 12.
Mirzajani, H.; Abbasiasl, T.; Mirlou, F.; Istif, E.; Bathaei, M.J.; Dağ, Ç.; Deyneli, O.; Yazıcı, D.; Beker, L. An Ultra-Compact and Wireless Tag for Battery-Free Sweat Glucose Monitoring. Biosens. Bioelectron. 2022, 213, 114450. https://doi.org/10.1016/j.bios.2022.114450.
- 13.
Chu, M.; Zhang, Y.; Ji, C.; Zhang, Y.; Yuan, Q.; Tan, J. DNA Nanomaterial-Based Electrochemical Biosensors for Clinical Diagnosis. ACS Nano 2024, 18, 31713–31736. https://doi.org/10.1021/acsnano.4c11857.
- 14.
Zhang, R.; Belwal, T.; Li, L.; Lin, X.; Xu, Y.; Luo, Z. Nanomaterial-Based Biosensors for Sensing Key Foodborne Pathogens: Advances from Recent Decades. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1465–1487. https://doi.org/10.1111/1541-4337.12576.
- 15.
Adeel, M.; Rahman, M.M.; Caligiuri, I.; Canzonieri, V.; Rizzolio, F.; Daniele, S. Recent Advances of Electrochemical and Optical Enzyme-Free Glucose Sensors Operating at Physiological Conditions. Biosens. Bioelectron. 2020, 165, 112331. https://doi.org/10.1016/j.bios.2020.112331.
- 16.
Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis. Nature 2016, 529, 509–514. https://doi.org/10.1038/nature16521.
- 17.
Laochai, T.; Yukird, J.; Promphet, N.; Qin, J.; Chailapakul, O.; Rodthongkum, N. Non-Invasive Electrochemical Immunosensor for Sweat Cortisol Based on L-Cys/AuNPs/ MXene Modified Thread Electrode. Biosens. Bioelectron. 2022, 203, 114039. https://doi.org/10.1016/j.bios.2022.114039.
- 18.
Heller, A. Amperometric Biosensors. Curr. Opin. Biotechnol. 1996, 7, 50–54. https://doi.org/10.1016/S0958-1669(96)80094-2.
- 19.
Hafeman, D.G.; Parce, J.W.; McConnell, H.M. Light-Addressable Potentiometric Sensor for Biochemical Systems. Science 1988, 240, 1182–1185. https://doi.org/10.1126/science.3375810.
- 20.
Bahadır, E.B.; Sezgintürk, M.K. Electrochemical Biosensors for Hormone Analyses. Biosens. Bioelectron. 2015, 68, 62–71. https://doi.org/10.1016/j.bios.2014.12.054.
- 21.
Wang, Y.; Xu, H.; Zhang, J.; Li, G. Electrochemical Sensors for Clinic Analysis. Sensors 2008, 8, 2043–2081. https://doi.org/10.3390/s8042043.
- 22.
Wu, J.; Liu, H.; Chen, W.; Ma, B.; Ju, H. Device Integration of Electrochemical Biosensors. Nat. Rev. Bioeng. 2023, 1, 346–360. https://doi.org/10.1038/s44222-023-00032-w.
- 23.
Karter, A.J.; Parker, M.M.; Moffet, H.H.; Gilliam, L.K.; Dlott, R. Association of Real-Time Continuous Glucose Monitoring with Glycemic Control and Acute Metabolic Events among Patients with Insulin-Treated Diabetes. JAMA 2021, 325, 1–12. https://doi.org/10.1001/jama.2021.6530.
- 24.
Zeng, R.; Qiu, M.; Wan, Q.; Huang, Z.; Liu, X.; Tang, D.; Knopp, D. Smartphone-Based Electrochemical Immunoassay for Point-of-Care Detection of SARS-CoV-2 Nucleocapsid Protein. Anal. Chem. 2022, 94, 15155–15161. https://doi.org/10.1021/acs.analchem.2c03606.
- 25.
Zhan, D.; Han, L.; Zhang, J.; He, Q.; Tian, Z.-W.; Tian, Z.-Q. Electrochemical Micro/Nano-Machining: Principles and Practices. Chem. Soc. Rev. 2017, 46, 1526–1544. https://doi.org/10.1039/C6CS00735J.
- 26.
Li, S.; Ma, Q. Electrochemical Nano-Sensing Interface for Exosomes Analysis and Cancer Diagnosis. Biosens. Bioelectron. 2022, 214, 114554. https://doi.org/10.1016/j.bios.2022.114554.
- 27.
Gao, F.; Liu, C.; Zhang, L.; Liu, T.; Wang, Z.; Song, Z.; Cai, H.; Fang, Z.; Chen, J.; Wang, J.; et al. Wearable and Flexible Electrochemical Sensors for Sweat Analysis: A Review. Microsyst. Nanoeng. 2023, 9, 1. https://doi.org/10.1038/s41378-022-00443-6.
- 28.
La Belle, J.T.; Adams, A.; Lin, C.-E.; Engelschall, E.; Pratt, B.; Cook, C.B. Self-Monitoring of Tear Glucose: The Development of a Tear Based Glucose Sensor as an Alternative to Self-Monitoring of Blood Glucose. Chem. Commun. 2016, 52, 9197–9204. https://doi.org/10.1039/C6CC03609K.
- 29.
Song, H.; Shin, H.; Seo, H.; Park, W.; Joo, B.J.; Kim, J.; Kim, J.; Kim, H.K.; Kim, J.; Park, J. Wireless Non-Invasive Monitoring of Cholesterol Using a Smart Contact Lens. Adv. Sci. 2022, 9, 2203597. https://doi.org/10.1002/advs.202203597.
- 30.
Davis, N., Heikenfeld, J., Milla, C.; Javey, A. The Challenges and Promise of Sweat Sensing | Nature Biotechnology. Available online: https://www.nature.com/articles/s41587-023-02059-1 (accessed on 3 September 2024).
- 31.
Zou, K.; Li, Q.; Li, D.; Jiao, Y.; Wang, L.; Li, L.; Wang, J.; Li, Y.; Gao, R.; Li, F.; et al. A Highly Selective Implantable Electrochemical Fiber Sensor for Real-Time Monitoring of Blood Homovanillic Acid. ACS Nano 2024, 18, 7485–7495. https://doi.org/10.1021/acsnano.3c11641.
- 32.
Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; Tunca, S.; Donnelly, R.F.; De Wael, K. Wearable Microneedle-Based Array Patches for Continuous Electrochemical Monitoring and Drug Delivery: Toward a Closed-Loop System for Methotrexate Treatment. ACS Sens. 2023, 8, 4161–4170. https://doi.org/10.1021/acssensors.3c01381.
- 33.
Zhu, B.; Li, X.; Zhu, L.; Qi, M.; Cao, J.; Zhou, L.; Su, B. In Vivo Electrochemical Measurement of Glucose Variation in the Brain of Early Diabetic Mice. ACS Sens. 2023, 8, 4064–4070. https://doi.org/10.1021/acssensors.3c01165.
- 34.
Zhu, X.; Ju, Y.; Chen, J.; Liu, D.; Liu, H. Nonenzymatic Wearable Sensor for Electrochemical Analysis of Perspiration Glucose. ACS Sens. 2018, 3, 1135–1141. https://doi.org/10.1021/acssensors.8b00168.
- 35.
Mishra, R.K.; Sempionatto, J.R.; Li, Z.; Brown, C.; Galdino, N.M.; Shah, R.; Liu, S.; Hubble, L.J.; Bagot, K.; Tapert, S.; et al. Simultaneous Detection of Salivary Δ9-Tetrahydrocannabinol and Alcohol Using a Wearable Electrochemical Ring Sensor. Talanta 2020, 211, 120757. https://doi.org/10.1016/j.talanta.2020.120757.
- 36.
Xue, Y.; Wu, F.; Zhao, X.; Ji, W.; Hou, L.; Yu, P.; Mao, L. Highly Sensitive Near-Field Electrochemical Sensor for In Vivo Monitoring of Respiratory Patterns. ACS Sens. 2024, 9, 2149–2155. https://doi.org/10.1021/acssensors.4c00261.
- 37.
Yang, B.; Wang, H.; Kong, J.; Fang, X. Long-Term Monitoring of Ultratrace Nucleic Acids Using Tetrahedral Nanostructure-Based NgAgo on Wearable Microneedles. Nat. Commun. 2024, 15, 1936. https://doi.org/10.1038/s41467-024-46215-w.
- 38.
Wang, M.; Yang, Y.; Min, J.; Song, Y.; Tu, J.; Mukasa, D.; Ye, C.; Xu, C.; Heflin, N.; McCune, J.S.; et al. A Wearable Electrochemical Biosensor for the Monitoring of Metabolites and Nutrients. Nat. Biomed. Eng. 2022, 6, 1225. https://doi.org/10.1038/s41551-022-00916-z.
- 39.
Yoon, S.; Yoon, H.; Zahed, M.A.; Park, C.; Kim, D.; Park, J.Y. Multifunctional Hybrid Skin Patch for Wearable Smart Healthcare Applications. Biosens. Bioelectron. 2022, 196, 113685. https://doi.org/10.1016/j.bios.2021.113685.
- 40.
Sankhala, D.; Sardesai, A.U.; Pali, M.; Lin, K.-C.; Jagannath, B.; Muthukumar, S.; Prasad, S. A Machine Learning-Based on-Demand Sweat Glucose Reporting Platform. Sci. Rep. 2022, 12, 2442. https://doi.org/10.1038/s41598-022-06434-x.
- 41.
Luo, M.; Lan, F.; Yang, C.; Ji, T.; Lou, Y.; Zhu, Y.; Li, W.; Chen, S.; Gao, Z.; Luo, S.; et al. Sensitive Small Extracellular Vesicles Associated circRNAs Analysis Combined with Machine Learning for Precision Identification of Gastric Cancer. Chem. Eng. J. 2024, 491, 152094. https://doi.org/10.1016/j.cej.2024.152094.
- 42.
Karimi-Maleh, H.; Orooji, Y.; Karimi, F.; Alizadeh, M.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; et al. A Critical Review on the Use of Potentiometric Based Biosensors for Biomarkers Detection. Biosens. Bioelectron. 2021, 184, 113252. https://doi.org/10.1016/j.bios.2021.113252.
- 43.
Kotanen, C.N.; Moussy, F.G.; Carrara, S.; Guiseppi-Elie, A. Implantable Enzyme Amperometric Biosensors. Biosens. Bioelectron. 2012, 35, 14–26. https://doi.org/10.1016/j.bios.2012.03.016.
- 44.
Ma, S.; Wan, Z.; Wang, C.; Song, Z.; Ding, Y.; Zhang, D.; Chan, C.L.J.; Shu, L.; Huang, L.; Yang, Z.; et al. Ultra-Sensitive and Stable Multiplexed Biosensors Array in Fully Printed and Integrated Platforms for Reliable Perspiration Analysis. Adv. Mater. 2024, 36, 2311106. https://doi.org/10.1002/adma.202311106.
- 45.
Labib, M.; Sargent, E.H.; Kelley, S.O. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem. Rev. 2016, 116, 9001–9090. https://doi.org/10.1021/acs.chemrev.6b00220.
- 46.
Silva, B.V.M.; Cordeiro, M.T.; Rodrigues, M.A.B.; Marques, E.T.A.; Dutra, R.F. A Label and Probe-Free Zika Virus Immunosensor Prussian Blue@carbon Nanotube-Based for Amperometric Detection of the NS2B Protein. Biosensors 2021, 11, 157. https://doi.org/10.3390/bios11050157.
- 47.
Wang, H.; Ma, Z. Copper Peroxide/ZIF-8 Self-Producing H2O2 Triggered Cascade Reaction for Amperometric Immunoassay of Carbohydrate Antigen 19-9. Biosens. Bioelectron. 2020, 169, 112644. https://doi.org/10.1016/j.bios.2020.112644.
- 48.
Yao, Y.; Chen, J.; Guo, Y.; Lv, T.; Chen, Z.; Li, N.; Cao, S.; Chen, B.; Chen, T. Integration of Interstitial Fluid Extraction and Glucose Detection in One Device for Wearable Non-Invasive Blood Glucose Sensors. Biosens. Bioelectron. 2021, 179, 113078. https://doi.org/10.1016/j.bios.2021.113078.
- 49.
Sehit, E.; Altintas, Z. Significance of Nanomaterials in Electrochemical Glucose Sensors: An Updated Review (2016–2020). Biosens. Bioelectron. 2020, 159, 112165. https://doi.org/10.1016/j.bios.2020.112165.
- 50.
Engblom, S.O. The Phosphate Sensor. Biosens. Bioelectron. 1998, 13, 981–994. https://doi.org/10.1016/S0956-5663(98)00001-3.
- 51.
Furst, A.L.; Francis, M.B. Impedance-Based Detection of Bacteria. Chem. Rev. 2019, 119, 700–726. https://doi.org/10.1021/acs.chemrev.8b00381.
- 52.
Zhou, J.; Zhou, S.; Fan, P.; Li, X.; Ying, Y.; Ping, J.; Pan, Y. Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information. Nano-Micro Lett. 2024, 16, 49. https://doi.org/10.1007/s40820-023-01274-4.
- 53.
Bonafè, F.; Decataldo, F.; Zironi, I.; Remondini, D.; Cramer, T.; Fraboni, B. AC Amplification Gain in Organic Electrochemical Transistors for Impedance-Based Single Cell Sensors. Nat. Commun. 2022, 13, 5423. https://doi.org/10.1038/s41467-022-33094-2.
- 54.
Devarakonda, S.; Ganapathysubramanian, B.; Shrotriya, P. Impedance-Based Nanoporous Anodized Alumina/ITO Platforms for Label-Free Biosensors. ACS Appl. Mater. Interfaces 2022, 14, 150–158. https://doi.org/10.1021/acsami.1c17243.
- 55.
Strong, M.E.; Richards, J.R.; Torres, M.; Beck, C.M.; La Belle, J.T. Faradaic Electrochemical Impedance Spectroscopy for Enhanced Analyte Detection in Diagnostics. Biosens. Bioelectron. 2021, 177, 112949. https://doi.org/10.1016/j.bios.2020.112949.
- 56.
Balakrishnan, G.; Bhat, A.; Naik, D.; Kim, J.S.; Marukyan, S.; Gido, L.; Ritter, M.; Khair, A.S.; Bettinger, C.J. Gelatin-Based Ingestible Impedance Sensor to Evaluate Gastrointestinal Epithelial Barriers. Adv. Mater. 2023, 35, 2211581. https://doi.org/10.1002/adma.202211581.
- 57.
Abdul Ghani, M.A.; Nordin, A.N.; Zulhairee, M.; Che Mohamad Nor, A.; Shihabuddin Ahmad Noorden, M.; Muhamad Atan, M.K.F.; Ab Rahim, R.; Mohd Zain, Z. Portable Electrochemical Biosensors Based on Microcontrollers for Detection of Viruses: A Review. Biosensors 2022, 12, 666. https://doi.org/10.3390/bios12080666.
- 58.
Fedor, S.; Lewis, R.; Pedrelli, P.; Mischoulon, D.; Curtiss, J.; Picard, R.W. Wearable Technology in Clinical Practice for Depressive Disorder. N. Engl. J. Med. 2023, 389, 2457–2466. https://doi.org/10.1056/NEJMra2215898.
- 59.
Chen, X.; Kim, D.-H.; Lu, N. Introduction: Wearable Devices. Chem. Rev. 2024, 124, 6145–6147. https://doi.org/10.1021/acs.chemrev.4c00271.
- 60.
Min, J.; Sempionatto, J.R.; Teymourian, H.; Wang, J.; Gao, W. Wearable Electrochemical Biosensors in North America. Biosens. Bioelectron. 2021, 172, 112750. https://doi.org/10.1016/j.bios.2020.112750.
- 61.
Promphet, N.; Ummartyotin, S.; Ngeontae, W.; Puthongkham, P.; Rodthongkum, N. Non-Invasive Wearable Chemical Sensors in Real-Life Applications. Anal. Chim. Acta 2021, 1179, 338643. https://doi.org/10.1016/j.aca.2021.338643.
- 62.
Tian, H.; Ma, J.; Li, Y.; Xiao, X.; Zhang, M.; Wang, H.; Zhu, N.; Hou, C.; Ulstrup, J. Electrochemical Sensing Fibers for Wearable Health Monitoring Devices. Biosens. Bioelectron. 2024, 246, 115890. https://doi.org/10.1016/j.bios.2023.115890.
- 63.
Huang, J.; Wang, H.; Wu, Q.; Yin, J.; Zhou, H.; He, Y. Clinical Research on Neurological and Psychiatric Diagnosis and Monitoring Using Wearable Devices: A Literature Review. Interdiscip. Med. 2024, 2, e20230037. https://doi.org/10.1002/INMD.20230037.
- 64.
Vaddiraju, S.; Burgess, D.J.; Tomazos, I.; Jain, F.C.; Papadimitrakopoulos, F. Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises. J. Diabetes Sci. Technol. 2010, 4, 1540–1562. https://doi.org/10.1177/193229681000400632.
- 65.
Regiart, M.; Ledo, A.; Fernandes, E.; Messina, G.A.; Brett, C.M.A.; Bertotti, M.; Barbosa, R.M. Highly Sensitive and Selective Nanostructured Microbiosensors for Glucose and Lactate Simultaneous Measurements in Blood Serum and in Vivo in Brain Tissue. Biosens. Bioelectron. 2022, 199, 113874. https://doi.org/10.1016/j.bios.2021.113874.
- 66.
Liu, W.-T.; Cao, Y.-P.; Zhou, X.-H.; Han, D. Interstitial Fluid Behavior and Diseases. Adv. Sci. Weinh. Baden-Wurtt. Ger. 2022, 9, e2100617. https://doi.org/10.1002/advs.202100617.
- 67.
Bakhshandeh, F.; Zheng, H.; Barra, N.G.; Sadeghzadeh, S.; Ausri, I.; Sen, P.; Keyvani, F.; Rahman, F.; Quadrilatero, J.; Liu, J.; et al. Wearable Aptalyzer Integrates Microneedle and Electrochemical Sensing for In Vivo Monitoring of Glucose and Lactate in Live Animals. Adv. Mater. 2024, 36, 2313743. https://doi.org/10.1002/adma.202313743.
- 68.
Li, J.; Wei, M.; Gao, B. A Review of Recent Advances in Microneedle-Based Sensing within the Dermal ISF That Could Transform Medical Testing. ACS Sens. 2024, 9, 1149–1161. https://doi.org/10.1021/acssensors.4c00142.
- 69.
Parrilla, M.; Detamornrat, U.; Domínguez-Robles, J.; Donnelly, R.F.; De Wael, K. Wearable Hollow Microneedle Sensing Patches for the Transdermal Electrochemical Monitoring of Glucose. Talanta 2022, 249, 123695. https://doi.org/10.1016/j.talanta.2022.123695.
- 70.
Monteiro, T.; Dias, C.; Lourenço, C.F.; Ledo, A.; Barbosa, R.M.; Almeida, M.G. Microelectrode Sensor for Real-Time Measurements of Nitrite in the Living Brain, in the Presence of Ascorbate. Biosensors 2021, 11, 277. https://doi.org/10.3390/bios11080277.
- 71.
Bandodkar, A.J.; Wang, J. Non-Invasive Wearable Electrochemical Sensors: A Review. Trends Biotechnol. 2014, 32, 363–371. https://doi.org/10.1016/j.tibtech.2014.04.005.
- 72.
Peng, H.-L.; Zhang, Y.; Liu, H.; Gao, C. Flexible Wearable Electrochemical Sensors Based on AuNR/PEDOT:PSS for Simultaneous Monitoring of Levodopa and Uric Acid in Sweat. ACS Sens. 2024, 9, 3296–3306. https://doi.org/10.1021/acssensors.4c00649.
- 73.
Shahub, S.; Lin, K.-C.; Muthukumar, S.; Prasad, S. A Proof-of-Concept Electrochemical Skin Sensor for Simultaneous Measurement of Glial Fibrillary Acidic Protein (GFAP) and Interleukin-6 (IL-6) for Management of Traumatic Brain Injuries. Biosensors 2022, 12, 1095. https://doi.org/10.3390/bios12121095.
- 74.
Tonyushkina, K.; Nichols, J.H. Glucose Meters: A Review of Technical Challenges to Obtaining Accurate Results. J. Diabetes Sci. Technol. 2009, 3, 971–980. https://doi.org/10.1177/193229680900300446.
- 75.
Clark, L.C.; Lyons, C. ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.
- 76.
Karon, B.S.; Boyd, J.C.; Klee, G.G. Glucose Meter Performance Criteria for Tight Glycemic Control Estimated by Simulation Modeling. Clin. Chem. 2010, 56, 1091–1097. https://doi.org/10.1373/clinchem.2010.145367.
- 77.
Villena Gonzales, W.; Mobashsher, A.; Abbosh, A. The Progress of Glucose Monitoring—A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. Sensors 2019, 19, 800. https://doi.org/10.3390/s19040800.
- 78.
Emaminejad, S.; Gao, W.; Wu, E.; Davies, Z.A.; Yin Yin Nyein, H.; Challa, S.; Ryan, S.P.; Fahad, H.M.; Chen, K.; Shahpar, Z.; et al. Autonomous Sweat Extraction and Analysis Applied to Cystic Fibrosis and Glucose Monitoring Using a Fully Integrated Wearable Platform. Proc. Natl. Acad. Sci. USA 2017, 114, 4625–4630. https://doi.org/10.1073/pnas.1701740114.
- 79.
Hong, X.; Wu, H.; Wang, C.; Zhang, X.; Wei, C.; Xu, Z.; Chen, D.; Huang, X. Hybrid Janus Membrane with Dual-Asymmetry Integration of Wettability and Conductivity for Ultra-Low-Volume Sweat Sensing. ACS Appl. Mater. Interfaces 2022, 14, 9644–9654. https://doi.org/10.1021/acsami.1c16820.
- 80.
Pundir, C.S.; Narwal, V.; Batra, B. Determination of Lactic Acid with Special Emphasis on Biosensing Methods: A Review. Biosens. Bioelectron. 2016, 86, 777–790. https://doi.org/10.1016/j.bios.2016.07.076.
- 81.
Saha, T.; Fang, J.; Yokus, M.A.; Mukherjee, S.; Bozkurt, A.; Daniele, M.A.; Dickey, M.D.; Velev, O.D. A Wearable Patch for Prolonged Sweat Lactate Harvesting and Sensing. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Online, 1–5 November 2021; pp. 6863–6866. https://doi.org/10.1109/EMBC46164.2021.9630881.
- 82.
Saha, T.; Songkakul, T.; Knisely, C.T.; Yokus, M.A.; Daniele, M.A.; Dickey, M.D.; Bozkurt, A.; Velev, O.D. Wireless Wearable Electrochemical Sensing Platform with Zero-Power Osmotic Sweat Extraction for Continuous Lactate Monitoring. ACS Sens. 2022, 7, 2037–2048. https://doi.org/10.1021/acssensors.2c00830.
- 83.
Niu, J.; Lin, S.; Chen, D.; Wang, Z.; Cao, C.; Gao, A.; Cui, S.; Liu, Y.; Hong, Y.; Zhi, X.; et al. A Fully Elastic Wearable Electrochemical Sweat Detection System of Tree-Bionic Microfluidic Structure for Real-Time Monitoring. Small 2024, 20, 2306769. https://doi.org/10.1002/smll.202306769.
- 84.
Zhang, X.; Tang, Y.; Wu, H.; Wang, Y.; Niu, L.; Li, F. Integrated Aptasensor Array for Sweat Drug Analysis. Anal. Chem. 2022, 94, 7936–7943. https://doi.org/10.1021/acs.analchem.2c00736.
- 85.
Zhang, X.; Zhang, J.; Cai, Y.; Xu, S.; Wu, H.; Chen, X.; Huang, Y.; Li, F. Integrated Electrochemical Aptasensor Array toward Monitoring Anticancer Drugs in Sweat. Anal. Chem. 2024, 96, 4997–5005. https://doi.org/10.1021/acs.analchem.4c00297.
- 86.
Koch, C.; Reilly-O’Donnell, B.; Gutierrez, R.; Lucarelli, C.; Ng, F.S.; Gorelik, J.; Ivanov, A.P.; Edel, J.B. Nanopore Sequencing of DNA-Barcoded Probes for Highly Multiplexed Detection of microRNA, Proteins and Small Biomarkers. Nat. Nanotechnol. 2023, 18, 1483–1491. https://doi.org/10.1038/s41565-023-01479-z.
- 87.
Chen, R.; Du, X.; Cui, Y.; Zhang, X.; Ge, Q.; Dong, J.; Zhao, X. Vertical Flow Assay for Inflammatory Biomarkers Based on Nanofluidic Channel Array and SERS Nanotags. Small 2020, 16, 2002801. https://doi.org/10.1002/smll.202002801.
- 88.
Tanak, A.S.; Muthukumar, S.; Krishnan, S.; Schully, K.L.; Clark, D.V.; Prasad, S. Multiplexed Cytokine Detection Using Electrochemical Point-of-Care Sensing Device towards Rapid Sepsis Endotyping. Biosens. Bioelectron. 2021, 171, 112726. https://doi.org/10.1016/j.bios.2020.112726.
- 89.
Zheng, L.; Zhu, D.; Xiao, Y.; Zheng, X.; Chen, P. Microneedle Coupled Epidermal Sensor for Multiplexed Electrochemical Detection of Kidney Disease Biomarkers. Biosens. Bioelectron. 2023, 237, 115506. https://doi.org/10.1016/j.bios.2023.115506.
- 90.
Wang, J.; Wang, L.; Li, G.; Yan, D.; Liu, C.; Xu, T.; Zhang, X. Ultra-Small Wearable Flexible Biosensor for Continuous Sweat Analysis. ACS Sens. 2022, 7, 3102–3107. https://doi.org/10.1021/acssensors.2c01533.
- 91.
Lu, X.; Zhou, X.; Song, B.; Zhang, H.; Cheng, M.; Zhu, X.; Wu, Y.; Shi, H.; Chu, B.; He, Y.; et al. Framework Nucleic Acids Combined with 3D Hybridization Chain Reaction Amplifiers for Monitoring Multiple Human Tear Cytokines. Adv. Mater. 2024, 36, 2400622. https://doi.org/10.1002/adma.202400622.
- 92.
Aihara, M.; Kubota, N.; Minami, T.; Shirakawa, R.; Sakurai, Y.; Hayashi, T.; Iwamoto, M.; Takamoto, I.; Kubota, T.; Suzuki, R.; et al. Association between Tear and Blood Glucose Concentrations: Random Intercept Model Adjusted with Confounders in Tear Samples Negative for Occult Blood. J. Diabetes Investig. 2021, 12, 266–276. https://doi.org/10.1111/jdi.13344.
- 93.
Li, J.; Yu, H.; Zhao, J.; Qiao, X.; Chen, X.; Lu, Z.; Li, Q.; Lin, H.; Wu, W.; Zeng, W.; et al. Metal–Organic Framework-Based Surface-Enhanced Raman Scattering Sensing Platform for Trace Malondialdehyde Detection in Tears. Nano Lett. 2024, 24, 7792–7799. https://doi.org/10.1021/acs.nanolett.4c01978.
- 94.
Park, W.; Seo, H.; Kim, J.; Hong, Y.-M.; Song, H.; Joo, B.J.; Kim, S.; Kim, E.; Yae, C.-G.; Kim, J.; et al. In-Depth Correlation Analysis between Tear Glucose and Blood Glucose Using a Wireless Smart Contact Lens. Nat. Commun. 2024, 15, 2828. https://doi.org/10.1038/s41467-024-47123-9.
- 95.
Liao, C.; Chen, X.; Fu, Y. Salivary Analysis: An Emerging Paradigm for Non-Invasive Healthcare Diagnosis and Monitoring. Interdiscip. Med. 2023, 1, e20230009. https://doi.org/10.1002/INMD.20230009.
- 96.
Zhang, C.-Z.; Cheng, X.-Q.; Li, J.-Y.; Zhang, P.; Yi, P.; Xu, X.; Zhou, X.-D. Saliva in the Diagnosis of Diseases. Int. J. Oral Sci. 2016, 8, 133–137. https://doi.org/10.1038/ijos.2016.38.
- 97.
Song, M.; Bai, H.; Zhang, P.; Zhou, X.; Ying, B. Promising Applications of Human-Derived Saliva Biomarker Testing in Clinical Diagnostics. Int. J. Oral Sci. 2023, 15, 1–17. https://doi.org/10.1038/s41368-022-00209-w.
- 98.
Kim, J.; Imani, S.; de Araujo, W.R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T.R.L.C.; Mercier, P.P.; Wang, J. Wearable Salivary Uric Acid Mouthguard Biosensor with Integrated Wireless Electronics. Biosens. Bioelectron. 2015, 74, 1061–1068. https://doi.org/10.1016/j.bios.2015.07.039.
- 99.
Lim, H.-R.; Lee, S.M.; Park, S.; Choi, C.; Kim, H.; Kim, J.; Mahmood, M.; Lee, Y.; Kim, J.-H.; Yeo, W.-H. Smart Bioelectronic Pacifier for Real-Time Continuous Monitoring of Salivary Electrolytes. Biosens. Bioelectron. 2022, 210, 114329. https://doi.org/10.1016/j.bios.2022.114329.
- 100.
Jin, X.; Zha, L.; Wang, F.; Wang, Y.; Zhang, X. Fully Integrated Wearable Humidity Sensor for Respiration Monitoring. Front. Bioeng. Biotechnol. 2022, 10, 1070855.
- 101.
Choi, S.; Yu, H.; Jang, J.; Kim, M.; Kim, S.; Jeong, H.S.; Kim, I. Nitrogen-Doped Single Graphene Fiber with Platinum Water Dissociation Catalyst for Wearable Humidity Sensor. Small 2018, 14, 1703934. https://doi.org/10.1002/smll.201703934.
- 102.
Wang, C.; Cai, Y.; Zhou, W.; Chen, P.; Xu, L.; Han, T.; Hu, Y.; Xu, X.; Liu, B.; Yu, X. A Wearable Respiration Sensor for Real-Time Monitoring of Chronic Kidney Disease. ACS Appl. Mater. Interfaces 2022, 14, 12630–12639. https://doi.org/10.1021/acsami.1c23878.
- 103.
Ahmed, A.; Shahzad, A.; Naseem, A.; Ali, S.; Ahmad, I. Evaluating the effectiveness of data governance frameworks in ensuring security and privacy of healthcare data: A quantitative analysis of ISO standards, GDPR, and HIPAA in blockchain technology. PloS ONE 2025, 20, e0324285. https://doi.org/10.1371/journal.pone.0324285.