- 1.
Liang, X.; Chen, D.; Su, A.; Liu, Y. Divergent Molecular Assembly and Catalytic Mechanisms between Bacterial and Archaeal RNase P in Pre-tRNA Cleavage. Proc. Natl. Acad. Sci. USA 2024, 121, e2407579121. https://doi.org/10.1073/pnas.2407579121.
- 2.
Dar, D.; Sorek, R. Regulation of Antibiotic-Resistance by Non-Coding RNAs in Bacteria. Curr. Opin. Microbiol. 2017, 36, 111–117. https://doi.org/10.1016/j.mib.2017.02.005.
- 3.
Liu, B.; Samaniego, C.C.; Bennett, M.R.; Franco, E.; Chappell, J. A Portable Regulatory RNA Array Design Enables Tunable and Complex Regulation across Diverse Bacteria. Nat. Commun. 2023, 14, 5268. https://doi.org/10.1038/s41467-023-40785-x.
- 4.
Schmerer, N.; Janga, H.; Aillaud, M.; Hoffmann, J.; Aznaourova, M.; Wende, S.; Steding, H.; Halder, L.D.; Uhl, M.; Boldt, F.; et al. A Searchable Atlas of Pathogen-Sensitive lncRNA Networks in Human Macrophages. Nat. Commun. 2025, 16, 4733. https://doi.org/10.1038/s41467-025-60084-x.
- 5.
Wilson, R.C.; Doudna, J.A. Molecular Mechanisms of RNA Interference. Annu. Rev. Biophys. 2013, 42, 217–239. https://doi.org/10.1146/annurev-biophys-083012-130404.
- 6.
Nugent, P.J.; Park, H.; Wladyka, C.L.; Yelland, J.N.; Sinha, S.; Chen, K.Y.; Bynum, C.; Quarterman, G.; Lee, S.C.; Hsieh, A.C.; et al. Decoding Post-Transcriptional Regulatory Networks by RNA-Linked CRISPR Screening in Human Cells. Nat. Methods 2025, 22, 1237–1246. https://doi.org/10.1038/s41592-025-02702-6.
- 7.
Gao, L.; Chen, D.; Liu, Y. Ligand Response of Guanidine-IV Riboswitch at Single-Molecule Level. eLife 2024, 13, RP94706. https://doi.org/10.7554/eLife.94706.
- 8.
Waters, L.S. Bacterial Manganese Sensing and Homeostasis. Curr. Opin. Chem. Biol. 2020, 55, 96–102. https://doi.org/10.1016/j.cbpa.2020.01.003.
- 9.
Guanzon, D.A.; Pienkoß, S.; Brandenburg, V.B.; Röder, J.; Scheller, D.; Dietze, A.; Wimbert, A.; Twittenhoff, C.; Narberhaus, F. Two Temperature-Responsive RNAs Act in Concert: The Small RNA CyaR and the mRNA ompX. Nucleic Acids Res. 2025, 53, gkaf041. https://doi.org/10.1093/nar/gkaf041.
- 10.
Wu, L.; Chen, D.; Ding, J.; Liu, Y. A Transient Conformation Facilitates Ligand Binding to the Adenine Riboswitch. iScience 2021, 24, 103512. https://doi.org/10.1016/j.isci.2021.103512.
- 11.
Atilho, R.M.; Mirihana Arachchilage, G.; Greenlee, E.B.; Knecht, K.M.; Breaker, R.R. A Bacterial Riboswitch Class for the Thiamin Precursor HMP-PP Employs a Terminator-Embedded Aptamer. eLife 2019, 8, e45210. https://doi.org/10.7554/eLife.45210.
- 12.
Sudarsan, N.; Lee, E.R.; Weinberg, Z.; Moy, R.H.; Kim, J.N.; Link, K.H.; Breaker, R.R. Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP. Science 2008, 321, 411–413. https://doi.org/10.1126/science.1159519.
- 13.
Zhao, B.; Guffy, S.L.; Williams, B.; Zhang, Q. An Excited State Underlies Gene Regulation of a Transcriptional Riboswitch. Nat. Chem. Biol. 2017, 13, 968–974. https://doi.org/10.1038/nchembio.2427.
- 14.
Capdevila, D.A.; Rondón, J.J.; Edmonds, K.A.; Rocchio, J.S.; Dujovne, M.V.; Giedroc, D.P. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem. Rev. 2024, 124, 13574–13659. https://doi.org/10.1021/acs.chemrev.4c00264.
- 15.
Kiliushik, D.; Goenner, C.; Law, M.; Schroeder, G.M.; Srivastava, Y.; Jenkins, J.L.; Wedekind, J.E. Knotty Is Nice: Metabolite Binding and RNA-Mediated Gene Regulation by the preQ1 Riboswitch Family. J. Biol. Chem. 2024, 300, 107951. https://doi.org/10.1016/j.jbc.2024.107951.
- 16.
Chen, D.; Han, Z.; Liang, X.; Liu, Y. Engineering a DNA Polymerase for Modifying Large RNA at Specific Positions. Nat. Chem. 2025, 17, 382–392. https://doi.org/10.1038/s41557-024-01707-6.
- 17.
Stagno, J.R.; Wang, Y.-X. Riboswitch Mechanisms for Regulation of P1 Helix Stability. Int. J. Mol. Sci. 2024, 25, 10682. https://doi.org/10.3390/ijms251910682.
- 18.
Zheng, L.; Song, Q.; Xu, X.; Shen, X.; Li, C.; Li, H.; Chen, H.; Ren, A. Structure-Based Insights into Recognition and Regulation of SAM-Sensing Riboswitches. Sci. China Life Sci. 2023, 66, 31–50. https://doi.org/10.1007/s11427-022-2188-7.
- 19.
Bushhouse, D.Z.; Fu, J.; Lucks, J.B. RNA Folding Kinetics Control Riboswitch Sensitivity in Vivo. Nat. Commun. 2025, 16, 953. https://doi.org/10.1038/s41467-024-55601-3.
- 20.
Chen, D.; Li, J.; Wu, Y.; Hong, L.; Liu, Y. Structural Dynamics-Guided Engineering of a Riboswitch RNA for Evolving c-Di-AMP Synthases. Sci. Adv. 2025, 11, eadt8165. https://doi.org/10.1126/sciadv.adt8165.
- 21.
Hedwig, V.; Spöring, M.; Ottlinger, J.; Köse, S.; Nar, H.; Schnapp, G.; Gottschling, D.; Klein, H.; Aspnes, G.; Klugmann, M.; et al. Engineering Oxypurinol-Responsive Riboswitches Based on Bacterial Xanthine Aptamers for Gene Expression Control in Mammalian Cell Culture. Nucleic Acids Res. 2025, 53, gkae1189. https://doi.org/10.1093/nar/gkae1189.
- 22.
Ogawa, A.; Fujikawa, M.; Tanimoto, R.; Matsuno, K.; Uehara, R.; Inoue, H.; Takahashi, H. Cell-Free Multistep Gene Regulatory Cascades Using Eukaryotic ON-Riboswitches Responsive to in Situ Expressed Protein Ligands. ACS Synth. Biol. 2025, 14, 909–918. https://doi.org/10.1021/acssynbio.4c00840.
- 23.
Pham, H.L.; Wong, A.; Chua, N.; Teo, W.S.; Yew, W.S.; Chang, M.W. Engineering a Riboswitch-Based Genetic Platform for the Self-Directed Evolution of Acid-Tolerant Phenotypes. Nat. Commun. 2017, 8, 411. https://doi.org/10.1038/s41467-017-00511-w.
- 24.
Serganov, A.; Huang, L.; Patel, D.J. Coenzyme Recognition and Gene Regulation by a Flavin Mononucleotide Riboswitch. Nature 2009, 458, 233–237. https://doi.org/10.1038/nature07642.
- 25.
Degenhardt, M.F.S.; Degenhardt, H.F.; Bhandari, Y.R.; Lee, Y.-T.; Ding, J.; Yu, P.; Heinz, W.F.; Stagno, J.R.; Schwieters, C.D.; Watts, N.R.; et al. Determining Structures of RNA Conformers Using AFM and Deep Neural Networks. Nature 2025, 637, 1234–1243. https://doi.org/10.1038/s41586-024-07559-x.
- 26.
Haack, D.B.; Rudolfs, B.; Jin, S.; Khitun, A.; Weeks, K.M.; Toor, N. Scaffold-Enabled High-Resolution Cryo-EM Structure Determination of RNA. Nat. Commun. 2025, 16, 880. https://doi.org/10.1038/s41467-024-55699-5.
- 27.
Wang, S.; Chen, D.; Gao, L.; Liu, Y. Short Oligonucleotides Facilitate Co-Transcriptional Labeling of RNA at Specific Positions. J. Am. Chem. Soc. 2022, 144, 5494–5502. https://doi.org/10.1021/jacs.2c00020.
- 28.
Wickiser, J.K.; Winkler, W.C.; Breaker, R.R.; Crothers, D.M. The Speed of RNA Transcription and Metabolite Binding Kinetics Operate an FMN Riboswitch. Mol. Cell 2005, 18, 49–60. https://doi.org/10.1016/j.molcel.2005.02.032.
- 29.
Winkler, W.; Nahvi, A.; Breaker, R.R. Thiamine Derivatives Bind Messenger RNAs Directly to Regulate Bacterial Gene Expression. Nature 2002, 419, 952–956. https://doi.org/10.1038/nature01145.
- 30.
Winkler, W.C.; Nahvi, A.; Roth, A.; Collins, J.A.; Breaker, R.R. Control of Gene Expression by a Natural Metabolite-Responsive Ribozyme. Nature 2004, 428, 281–286. https://doi.org/10.1038/nature02362.
- 31.
Reining, A.; Nozinovic, S.; Schlepckow, K.; Buhr, F.; Fürtig, B.; Schwalbe, H. Three-State Mechanism Couples Ligand and Temperature Sensing in Riboswitches. Nature 2013, 499, 355–359. https://doi.org/10.1038/nature12378.
- 32.
Manz, C.; Kobitski, A.Y.; Samanta, A.; Keller, B.G.; Jäschke, A.; Nienhaus, G.U. Single-Molecule FRET Reveals the Energy Landscape of the Full-Length SAM-I Riboswitch. Nat. Chem. Biol. 2017, 13, 1172–1178. https://doi.org/10.1038/nchembio.2476.
- 33.
Neupane, K.; Yu, H.; Foster, D.A.N.; Wang, F.; Woodside, M.T. Single-Molecule Force Spectroscopy of the Add Adenine Riboswitch Relates Folding to Regulatory Mechanism. Nucleic Acids Res. 2011, 39, 7677–7687. https://doi.org/10.1093/nar/gkr305.
- 34.
Stagno, J.R.; Liu, Y.; Bhandari, Y.R.; Conrad, C.E.; Panja, S.; Swain, M.; Fan, L.; Nelson, G.; Li, C.; Wendel, D.R.; et al. Structures of Riboswitch RNA Reaction States by Mix-and-Inject XFEL Serial Crystallography. Nature 2017, 541, 242–246. https://doi.org/10.1038/nature20599.
- 35.
Zhang, K.; Li, S.; Kappel, K.; Pintilie, G.; Su, Z.; Mou, T.-C.; Schmid, M.F.; Das, R.; Chiu, W. Cryo-EM Structure of a 40 kDa SAM-IV Riboswitch RNA at 3.7 Å Resolution. Nat. Commun. 2019, 10, 5511. https://doi.org/10.1038/s41467-019-13494-7.
- 36.
Reyes, F.E.; Schwartz, C.R.; Tainer, J.A.; Rambo, R.P. Methods for Using New Conceptual Tools and Parameters to Assess RNA Structure by Small-Angle X-Ray Scattering. Methods Enzymol. 2014, 549, 235–263. https://doi.org/10.1016/B978-0-12-801122-5.00011-8.
- 37.
Baird, N.J.; Ferré-D’Amaré, A.R. Idiosyncratically Tuned Switching Behavior of Riboswitch Aptamer Domains Revealed by Comparative Small-Angle X-Ray Scattering Analysis. RNA 2010, 16, 598–609. https://doi.org/10.1261/rna.1852310.
- 38.
Roy, S.; Lammert, H.; Hayes, R.L.; Chen, B.; LeBlanc, R.; Dayie, T.K.; Onuchic, J.N.; Sanbonmatsu, K.Y. A Magnesium-Induced Triplex Pre-Organizes the SAM-II Riboswitch. PLoS Comput. Biol. 2017, 13, e1005406. https://doi.org/10.1371/journal.pcbi.1005406.
- 39.
Kulshina, N.; Baird, N.J.; Ferré-D’Amaré, A.R. Recognition of the Bacterial Second Messenger Cyclic Diguanylate by Its Cognate Riboswitch. Nat. Struct. Mol. Biol. 2009, 16, 1212–1217. https://doi.org/10.1038/nsmb.1701.
- 40.
Crielaard, S.; Peters, C.F.M.; Slivkov, A.; van den Homberg, D.A.L.; Velema, W.A. Chemotranscriptomic Profiling with a Thiamine Monophosphate Photoaffinity Probe. Chem. Sci. 2025, 16, 4725–4731. https://doi.org/10.1039/d4sc06189f.
- 41.
Eschbach, S.H.; Hien, E.D.M.; Ghosh, T.; Lamontagne, A.-M.; Lafontaine, D.A. The Escherichia Coli ribB Riboswitch Senses Flavin Mononucleotide within a Defined Transcriptional Window. RNA 2024, 30, 1660–1673. https://doi.org/10.1261/rna.080074.124.
- 42.
Ott, E.; Stolz, J.; Lehmann, M.; Mack, M. The RFN Riboswitch of Bacillus Subtilis Is a Target for the Antibiotic Roseoflavin Produced by Streptomyces Davawensis. RNA Biol. 2009, 6, 276–280. https://doi.org/10.4161/rna.6.3.8342.
- 43.
Mansjö, M.; Johansson, J. The Riboflavin Analog Roseoflavin Targets an FMN-Riboswitch and Blocks Listeria Monocytogenes Growth, but Also Stimulates Virulence Gene-Expression and Infection. RNA Biol. 2011, 8, 674–680. https://doi.org/10.4161/rna.8.4.15586.
- 44.
Howe, J.A.; Wang, H.; Fischmann, T.O.; Balibar, C.J.; Xiao, L.; Galgoci, A.M.; Malinverni, J.C.; Mayhood, T.; Villafania, A.; Nahvi, A.; et al. Selective Small-Molecule Inhibition of an RNA Structural Element. Nature 2015, 526, 672–677. https://doi.org/10.1038/nature15542.
- 45.
Rizvi, N.F.; Howe, J.A.; Nahvi, A.; Klein, D.J.; Fischmann, T.O.; Kim, H.-Y.; McCoy, M.A.; Walker, S.S.; Hruza, A.; Richards, M.P.; et al. Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry. ACS Chem. Biol. 2018, 13, 820–831. https://doi.org/10.1021/acschembio.7b01013.
- 46.
Kim, J.N.; Blount, K.F.; Puskarz, I.; Lim, J.; Link, K.H.; Breaker, R.R. Design and Antimicrobial Action of Purine Analogues That Bind Guanine Riboswitches. ACS Chem. Biol. 2009, 4, 915–927. https://doi.org/10.1021/cb900146k.
- 47.
Mulhbacher, J.; Brouillette, E.; Allard, M.; Fortier, L.-C.; Malouin, F.; Lafontaine, D.A. Novel Riboswitch Ligand Analogs as Selective Inhibitors of Guanine-Related Metabolic Pathways. PLoS Pathog. 2010, 6, e1000865. https://doi.org/10.1371/journal.ppat.1000865.
- 48.
Gilbert, S.D.; Mediatore, S.J.; Batey, R.T. Modified Pyrimidines Specifically Bind the Purine Riboswitch. J. Am. Chem. Soc. 2006, 128, 14214–14215. https://doi.org/10.1021/ja063645t.
- 49.
Kim, J.N.; Blount, K.F.; Puskarz, I.; Lim, J.; Link, K.H.; Breaker, R.R. Design and Antimicrobial Action of Purine Analogues That Bind Guanine Riboswitches. ACS Chem. Biol. 2009, 4, 915–927. https://doi.org/10.1021/cb900146k.
- 50.
Childs-Disney, J.L.; Yang, X.; Gibaut, Q.M.R.; Tong, Y.; Batey, R.T.; Disney, M.D. Targeting RNA Structures with Small Molecules. Nat. Rev. Drug Discov. 2022, 21, 736–762. https://doi.org/10.1038/s41573-022-00521-4.
- 51.
Falese, J.P.; Donlic, A.; Hargrove, A.E. Targeting RNA with Small Molecules: From Fundamental Principles towards the Clinic. Chem. Soc. Rev. 2021, 50, 2224–2243. https://doi.org/10.1039/d0cs01261k.
- 52.
Gutierrez-Preciado, A.; Jensen, R.A.; Yanofsky, C.; Merino, E. New Insights into Regulation of the Tryptophan Biosynthetic Operon in Gram-Positive Bacteria. Trends Genet. TIG 2005, 21, 432–436. https://doi.org/10.1016/j.tig.2005.06.001.
- 53.
Campos-Chavez, E.; Paul, S.; Zhou, Z.; Alonso, D.; Verma, A.R.; Fei, J.; Mondragón, A. Translational T-Box Riboswitches Bind tRNA by Modulating Conformational Flexibility. Nat. Commun. 2024, 15, 6592. https://doi.org/10.1038/s41467-024-50885-x.
- 54.
Suddala, K.C.; Yoo, J.; Fan, L.; Zuo, X.; Wang, Y.-X.; Chung, H.S.; Zhang, J. Direct Observation of tRNA-Chaperoned Folding of a Dynamic mRNA Ensemble. Nat. Commun. 2023, 14, 5438. https://doi.org/10.1038/s41467-023-41155-3.
- 55.
Niu, X.; Xu, Z.; Zhang, Y.; Zuo, X.; Chen, C.; Fang, X. Structural and Dynamic Mechanisms for Coupled Folding and tRNA Recognition of a Translational T-Box Riboswitch. Nat. Commun. 2023, 14, 7394. https://doi.org/10.1038/s41467-023-43232-z.
- 56.
Orac, C.M.; Zhou, S.; Means, J.A.; Boehm, D.; Bergmeier, S.C.; Hines, J.V. Synthesis and Stereospecificity of 4,5-Disubstituted Oxazolidinone Ligands Binding to T-Box Riboswitch RNA. J. Med. Chem. 2011, 54, 6786–6795. https://doi.org/10.1021/jm2006904.
- 57.
Anupam, R.; Denapoli, L.; Muchenditsi, A.; Hines, J.V. Identification of Neomycin B-Binding Site in T Box Antiterminator Model RNA. Bioorg. Med. Chem. 2008, 16, 4466–4470. https://doi.org/10.1016/j.bmc.2008.02.056.
- 58.
Fowler, C.C.; Brown, E.D.; Li, Y. Using a Riboswitch Sensor to Examine Coenzyme B(12) Metabolism and Transport in E. Coli. Chem. Biol. 2010, 17, 756–765. https://doi.org/10.1016/j.chembiol.2010.05.025.
- 59.
Xue, Y.; Li, J.; Chen, D.; Zhao, X.; Hong, L.; Liu, Y. Observation of Structural Switch in Nascent SAM-VI Riboswitch during Transcription at Single-Nucleotide and Single-Molecule Resolution. Nat. Commun. 2023, 14, 2320. https://doi.org/10.1038/s41467-023-38042-2.
- 60.
Kipkorir, T.; Polgar, P.; Barker, D.; D’Halluin, A.; Patel, Z.; Arnvig, K.B. A Novel Regulatory Interplay between Atypical B12 Riboswitches and uORF Translation in Mycobacterium Tuberculosis. Nucleic Acids Res. 2024, 52, 7876–7892. https://doi.org/10.1093/nar/gkae338.
- 61.
Gao, X.; Dong, X.; Subramanian, S.; Matthews, P.M.; Cooper, C.A.; Kearns, D.B.; Dann, C.E. Engineering of Bacillus Subtilis Strains to Allow Rapid Characterization of Heterologous Diguanylate Cyclases and Phosphodiesterases. Appl. Environ. Microbiol. 2014, 80, 6167–6174. https://doi.org/10.1128/AEM.01638-14.
- 62.
Michener, J.K.; Smolke, C.D. High-Throughput Enzyme Evolution in Saccharomyces Cerevisiae Using a Synthetic RNA Switch. Metab. Eng. 2012, 14, 306–316. https://doi.org/10.1016/j.ymben.2012.04.004.
- 63.
Wang, J.; Gao, D.; Yu, X.; Li, W.; Qi, Q. Evolution of a Chimeric Aspartate Kinase for L-Lysine Production Using a Synthetic RNA Device. Appl. Microbiol. Biotechnol. 2015, 99, 8527–8536. https://doi.org/10.1007/s00253-015-6615-0.
- 64.
Meyer, A.; Pellaux, R.; Potot, S.; Becker, K.; Hohmann, H.-P.; Panke, S.; Held, M. Optimization of a Whole-Cell Biocatalyst by Employing Genetically Encoded Product Sensors inside Nanolitre Reactors. Nat. Chem. 2015, 7, 673–678. https://doi.org/10.1038/nchem.2301.
- 65.
Truong, L.; Ferré-D’Amaré, A.R. From Fluorescent Proteins to Fluorogenic RNAs: Tools for Imaging Cellular Macromolecules. Protein Sci. Publ. Protein Soc. 2019, 28, 1374–1386. https://doi.org/10.1002/pro.3632.
- 66.
You, M.; Litke, J.L.; Jaffrey, S.R. Imaging Metabolite Dynamics in Living Cells Using a Spinach-Based Riboswitch. Proc. Natl. Acad. Sci. USA 2015, 112, E2756–E2765. https://doi.org/10.1073/pnas.1504354112.
- 67.
Paige, J.S.; Nguyen-Duc, T.; Song, W.; Jaffrey, S.R. Fluorescence Imaging of Cellular Metabolites with RNA. Science 2012, 335, 1194. https://doi.org/10.1126/science.1218298.
- 68.
Bose, D.; Su, Y.; Marcus, A.; Raulet, D.H.; Hammond, M.C. An RNA-Based Fluorescent Biosensor for High-Throughput Analysis of the cGAS-cGAMP-STING Pathway. Cell Chem. Biol. 2016, 23, 1539–1549. https://doi.org/10.1016/j.chembiol.2016.10.014.
- 69.
Chen, Z.; Chen, W.; Reheman, Z.; Jiang, H.; Wu, J.; Li, X. Genetically Encoded RNA-Based Sensors with Pepper Fluorogenic Aptamer. Nucleic Acids Res. 2023, 51, 8322–8336. https://doi.org/10.1093/nar/gkad620.
- 70.
Kellenberger, C.A.; Chen, C.; Whiteley, A.T.; Portnoy, D.A.; Hammond, M.C. RNA-Based Fluorescent Biosensors for Live Cell Imaging of Second Messenger Cyclic Di-AMP. J. Am. Chem. Soc. 2015, 137, 6432–6435. https://doi.org/10.1021/jacs.5b00275.
- 71.
Wang, X.C.; Wilson, S.C.; Hammond, M.C. Next-Generation RNA-Based Fluorescent Biosensors Enable Anaerobic Detection of Cyclic Di-GMP. Nucleic Acids Res. 2016, 44, e139. https://doi.org/10.1093/nar/gkw580.
- 72.
Braselmann, E.; Palmer, A.E. A Multicolor Riboswitch-Based Platform for Imaging of RNA in Live Mammalian Cells. Methods Enzymol. 2020, 641, 343–372. https://doi.org/10.1016/bs.mie.2020.03.004.
- 73.
Braselmann, E.; Wierzba, A.J.; Polaski, J.T.; Chromiński, M.; Holmes, Z.E.; Hung, S.-T.; Batan, D.; Wheeler, J.R.; Parker, R.; Jimenez, R.; et al. A Multicolor Riboswitch-Based Platform for Imaging of RNA in Live Mammalian Cells. Nat. Chem. Biol. 2018, 14, 964–971. https://doi.org/10.1038/s41589-018-0103-7.
- 74.
Bühler, B.; Schokolowski, J.; Benderoth, A.; Englert, D.; Grün, F.; Jäschke, A.; Sunbul, M. Avidity-Based Bright and Photostable Light-up Aptamers for Single-Molecule mRNA Imaging. Nat. Chem. Biol. 2023, 19, 478–487. https://doi.org/10.1038/s41589-022-01228-8.
- 75.
Baker, J.L.; Sudarsan, N.; Weinberg, Z.; Roth, A.; Stockbridge, R.B.; Breaker, R.R. Widespread Genetic Switches and Toxicity Resistance Proteins for Fluoride. Science 2012, 335, 233–235. https://doi.org/10.1126/science.1215063.
- 76.
Thavarajah, W.; Silverman, A.D.; Verosloff, M.S.; Kelley-Loughnane, N.; Jewett, M.C.; Lucks, J.B. Point-of-Use Detection of Environmental Fluoride via a Cell-Free Riboswitch-Based Biosensor. ACS Synth. Biol. 2020, 9, 10–18. https://doi.org/10.1021/acssynbio.9b00347.
- 77.
Ariyarathna, M.R.; Nissanka, J.P.; Methlal, K.; Abeyrathne, K.D.; Satharasinghe, M.; Banushan, P.; Manawadu, D.; Mirihana Arachchilage, G.; Silva, G.N. Simple and Cost-Effective Fluoride Riboswitch-Based Whole-Cell Biosensor for the Determination of Fluoride in Drinking Water. Appl. Biochem. Biotechnol. 2025. https://doi.org/10.1007/s12010-025-05269-2.
- 78.
Brown, D.M.; Phillips, D.A.; Garcia, D.C.; Arce, A.; Lucci, T.; Davies, J.P.; Mangini, J.T.; Rhea, K.A.; Bernhards, C.B.; Biondo, J.R.; et al. Semiautomated Production of Cell-Free Biosensors. ACS Synth. Biol. 2025, 14, 979–986. https://doi.org/10.1021/acssynbio.4c00703.
- 79.
Boyd, M.A.; Thavarajah, W.; Lucks, J.B.; Kamat, N.P. Robust and Tunable Performance of a Cell-Free Biosensor Encapsulated in Lipid Vesicles. Sci. Adv. 2023, 9, eadd6605. https://doi.org/10.1126/sciadv.add6605.
- 80.
Galizi, R.; Jaramillo, A. Engineering CRISPR Guide RNA Riboswitches for in Vivo Applications. Curr. Opin. Biotechnol. 2019, 55, 103–113. https://doi.org/10.1016/j.copbio.2018.08.007.
- 81.
Hu, L.-F.; Li, Y.-X.; Wang, J.-Z.; Zhao, Y.-T.; Wang, Y. Controlling CRISPR-Cas9 by Guide RNA Engineering. Wiley Interdiscip. Rev. RNA 2023, 14, e1731. https://doi.org/10.1002/wrna.1731.
- 82.
Fukunaga, K.; Teramoto, T.; Nakashima, M.; Ohtani, T.; Katsuki, R.; Matsuura, T.; Yokobayashi, Y.; Kakuta, Y. Structural Insights into Lab-Coevolved RNA-RBP Pairs and Applications of Synthetic Riboswitches in Cell-Free System. Nucleic Acids Res. 2025, 53, gkaf212. https://doi.org/10.1093/nar/gkaf212.