- 1.
Chi, H.; Pepper, M.; Thomas, P.G. Principles and therapeutic applications of adaptive immunity. Cell 2024, 187, 2052–2078. https://doi.org/10.1016/j.cell.2024.03.037.
- 2.
Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021, 6, 291. https://doi.org/10.1038/s41392-021-00687-0.
- 3.
Kumar, H.; Kawai, T.; Akira, S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011, 30, 16–34. https://doi.org/10.3109/08830185.2010.529976.
- 4.
Ge, J.; Yin, X.; Chen, L. Regulatory T cells: Masterminds of immune equilibrium and future therapeutic innovations. Front. Immunol. 2024, 15, 1457189.
- 5.
Takaba, H.; Takayanagi, H. The Mechanisms of T Cell Selection in the Thymus. Trends Immunol. 2017, 38, 805–816. https://doi.org/10.1016/j.it.2017.07.010.
- 6.
Shirafkan, F.; Hensel, L.; Rattay, K. Immune tolerance and the prevention of autoimmune diseases essentially depend on thymic tissue homeostasis. Front. Immunol. 2024, 15, 1339714. https://doi.org/10.3389/fimmu.2024.1339714.
- 7.
Susukida, T.; Kuwahara, S.; Song, B.; Kazaoka, A.; Aoki, S.; Ito, K. Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Commun. Biol. 2021, 4, 1137. https://doi.org/10.1038/s42003-021-02657-2.
- 8.
Hocking, A.M.; Buckner, J.H. Genetic basis of defects in immune tolerance underlying the development of autoimmunity. Front Immunol 2022, 13, 972121. https://doi.org/10.3389/fimmu.2022.972121.
- 9.
Fan, Y.; Wang, Y.; Xiao, H.; Sun, H. Advancements in understanding the role of intestinal dysbacteriosis mediated mucosal immunity in IgA nephropathy. BMC Nephrol. 2024, 25, 203. https://doi.org/10.1186/s12882-024-03646-3.
- 10.
Thurman, J.M.; Yapa, R. Complement Therapeutics in Autoimmune Disease. Front. Immunol. 2019, 10, 672. https://doi.org/10.3389/fimmu.2019.00672.
- 11.
Holtrop, T.; Budding, K.; Brandsma, A.M.; Leusen, J.H.W. Targeting the high affinity receptor, FcγRI, in autoimmune disease, neuropathy, and cancer. Immunother. Adv. 2022, 2, ltac011. https://doi.org/10.1093/immadv/ltac011.
- 12.
Sadik, C.D.; Miyabe, Y.; Sezin, T.; Luster, A.D. The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Semin. Immunol. 2018, 37, 21–29. https://doi.org/10.1016/j.smim.2018.03.002.
- 13.
Yan, C.; Zhu, M.; Staiger, J.; Johnson, P.F.; Gao, H. C5a-regulated CCAAT/Enhancer-binding Proteins β and δ Are Essential in Fcγ Receptor-mediated Inflammatory Cytokine and Chemokine Production in Macrophages. J. Biol. Chem. 2012, 287, 3217–3230. https://doi.org/10.1074/jbc.M111.280834.
- 14.
Mayadas, T.N.; Tsokos, G.C.; Tsuboi, N. Mechanisms of immune complex-mediated neutrophil recruitment and tissue injury. Circulation 2009, 120, 2012–2024. https://doi.org/10.1161/circulationaha.108.771170.
- 15.
Risitano, A.M.; Mastellos, D.C.; Huber-Lang, M.; Yancopoulou, D.; Garlanda, C.; Ciceri, F.; Lambris, J.D. Complement as a target in COVID-19? Nat. Rev. Immunol. 2020, 20, 343–344. https://doi.org/10.1038/s41577-020-0320-7.
- 16.
Mihai, S.; Nimmerjahn, F. The role of Fc receptors and complement in autoimmunity. Autoimmun. Rev. 2013, 12, 657–660. https://doi.org/10.1016/j.autrev.2012.10.008.
- 17.
Noris, M.; Remuzzi, G. Overview of complement activation and regulation. Semin. Nephrol. 2013, 33, 479–492. https://doi.org/10.1016/j.semnephrol.2013.08.001.
- 18.
Dunkelberger, J.R.; Song, W.-C. Complement and its role in innate and adaptive immune responses. Cell Res. 2010, 20, 34–50. https://doi.org/10.1038/cr.2009.139.
- 19.
Wang, H.; Xie, C.; Deng, B.; Ding, J.; Li, N.; Kou, Z.; Jin, M.; He, J.; Wang, Q.; Wen, H.; et al. Structural basis for antibody-mediated NMDA receptor clustering and endocytosis in autoimmune encephalitis. Nat. Struct. Mol. Biol. 2024, 31, 1987–1996. https://doi.org/10.1038/s41594-024-01387-3.
- 20.
Kurtoǧllu, A.U.; Koçtekin, B.; Kurtoǧlu, E.; Yildiz, M.; Bozkurt, S. Expression of CD55, CD59, and CD35 on red blood cells of β-thalassaemia patients. Cent. Eur. J. Immunol. 2017, 42, 78–84. https://doi.org/10.5114/ceji.2017.67321.
- 21.
Azoulay, E.; Zuber, J.; Bousfiha, A.A.; Long, Y.; Tan, Y.; Luo, S.; Essafti, M.; Annane, D. Complement system activation: Bridging physiology, pathophysiology, and therapy. Intensive Care Med. 2024, 50, 1791–1803. https://doi.org/10.1007/s00134-024-07611-4.
- 22.
Mastellos, D.C.; Hajishengallis, G.; Lambris, J.D. A guide to complement biology, pathology and therapeutic opportunity. Nat. Rev. Immunol. 2024, 24, 118–141. https://doi.org/10.1038/s41577-023-00926-1.
- 23.
Smith, R.J.H.; Appel, G.B.; Blom, A.M.; Cook, H.T.; D'Agati, V.D.; Fakhouri, F.; Fremeaux-Bacchi, V.; Józsi, M.; Kavanagh, D.; Lambris, J.D.; et al. C3 glomerulopathy—understanding a rare complement-driven renal disease. Nat. Rev. Nephrol. 2019, 15, 129–143. https://doi.org/10.1038/s41581-018-0107-2.
- 24.
Tortajada, A.; Gutierrez, E.; Pickering, M.C.; Praga Terente, M.; Medjeral-Thomas, N. The role of complement in IgA nephropathy. Mol. Immunol. 2019, 114, 123–132. https://doi.org/10.1016/j.molimm.2019.07.017.
- 25.
Frampton, S.; Smith, R.; Ferson, L.; Gibson, J.; Hollox, E.J.; Cragg, M.S.; Strefford, J.C. Fc gamma receptors: Their evolution, genomic architecture, genetic variation, and impact on human disease. Immunol. Rev. 2024, 328, 65–97. https://doi.org/10.1111/imr.13401.
- 26.
Yan, M.; Wang, Z.; Qiu, Z.; Cui, Y.; Xiang, Q. Platelet signaling in immune landscape: Comprehensive mechanism and clinical therapy. Biomark Res. 2024, 12, 164. https://doi.org/10.1186/s40364-024-00700-y.
- 27.
El Mdawar, M.B.; Maître, B.; Magnenat, S.; Tupin, F.; Jönsson, F.; Gachet, C.; de la Salle, H.; Hechler, B. Platelet FcγRIIA-induced serotonin release exacerbates the severity of transfusion-related acute lung injury in mice. Blood Adv. 2021, 5, 4817–4830. https://doi.org/10.1182/bloodadvances.2021004336.
- 28.
Barlev, A.N.; Malkiel, S.; Kurata-Sato, I.; Dorjée, A.L.; Suurmond, J.; Diamond, B. FcγRIIB regulates autoantibody responses by limiting marginal zone B cell activation. J. Clin. Investig. 2022, 132, e157250. https://doi.org/10.1172/jci157250.
- 29.
Buelli, S.; Imberti, B.; Morigi, M. The Complement C3a and C5a Signaling in Renal Diseases: A Bridge between Acute and Chronic Inflammation. Nephron 2024, 148, 712–723. https://doi.org/10.1159/000538241.
- 30.
Miyabe, Y.; Miyabe, C.; Murooka, T.T.; Kim, E.Y.; Newton, G.A.; Kim, N.D.; Haribabu, B.; Luscinskas, F.W.; Mempel, T.R.; Luster, A.D. Complement C5a Receptor is the Key Initiator of Neutrophil Adhesion Igniting Immune Complex-induced Arthritis. Sci. Immunol. 2017, 2, eaaj2195. https://doi.org/10.1126/sciimmunol.aaj2195.
- 31.
Luo, S.; Xu, H.; Gong, X.; Shen, J.; Chen, X.; Wu, Z. The complement C3a-C3aR and C5a-C5aR pathways promote viability and inflammation of human retinal pigment epithelium cells by targeting NF-κB signaling. Exp. Ther. Med. 2022, 24, 493. https://doi.org/10.3892/etm.2022.11420.
- 32.
Feng, Y.; Zhao, C.; Deng, Y.; Wang, H.; Ma, L.; Liu, S.; Tian, X.; Wang, B.; Bin, Y.; Chen, P.; et al. Mechanism of activation and biased signaling in complement receptor C5aR1. Cell Res. 2023, 33, 312–324. https://doi.org/10.1038/s41422-023-00779-2.
- 33.
Kumar, B.V.; Connors, T.J.; Farber, D.L. Human T Cell Development, Localization, and Function throughout Life. Immunity 2018, 48, 202–213. https://doi.org/10.1016/j.immuni.2018.01.007.
- 34.
Song, Y.; Li, J.; Wu, Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct. Target. Ther. 2024, 9, 263. https://doi.org/10.1038/s41392-024-01952-8.
- 35.
Dardalhon, V.; Korn, T.; Kuchroo, V.K.; Anderson, A.C. Role of Th1 and Th17 cells in organ-specific autoimmunity. J. Autoimmun. 2008, 31, 252–256. https://doi.org/10.1016/j.jaut.2008.04.017.
- 36.
Bhat, P.; Leggatt, G.; Waterhouse, N.; Frazer, I.H. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 2017, 8, e2836. https://doi.org/10.1038/cddis.2017.67.
- 37.
Lauffer, F.; Jargosch, M.; Krause, L.; Garzorz-Stark, N.; Franz, R.; Roenneberg, S.; Böhner, A.; Mueller, N.S.; Theis, F.J.; Schmidt-Weber, C.B.; et al. Type I Immune Response Induces Keratinocyte Necroptosis and Is Associated with Interface Dermatitis. J. Investig. Dermatol. 2018, 138, 1785–1794. https://doi.org/10.1016/j.jid.2018.02.034.
- 38.
Mandelcorn-Monson, R.L.; Shear, N.H.; Yau, E.; Sambhara, S.; Barber, B.H.; Spaner, D.; DeBenedette, M.A. Cytotoxic T lymphocyte reactivity to gp100, MelanA/MART-1, and tyrosinase, in HLA-A2-positive vitiligo patients. J. Investig. Dermatol. 2003, 121, 550–556. https://doi.org/10.1046/j.1523-1747.2003.12413.x.
- 39.
Das, D.; Akhtar, S.; Kurra, S.; Gupta, S.; Sharma, A. Emerging role of immune cell network in autoimmune skin disorders: An update on pemphigus, vitiligo and psoriasis. Cytokine Growth Factor Rev. 2019, 45, 35–44. https://doi.org/10.1016/j.cytogfr.2019.01.001.
- 40.
Furue, K.; Ito, T.; Tsuji, G.; Kadono, T.; Nakahara, T.; Furue, M. Autoimmunity and autoimmune co-morbidities in psoriasis. Immunology 2018, 154, 21–27. https://doi.org/10.1111/imm.12891.
- 41.
Lande, R.; Botti, E.; Jandus, C.; Dojcinovic, D.; Fanelli, G.; Conrad, C.; Chamilos, G.; Feldmeyer, L.; Marinari, B.; Chon, S.; et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat. Commun. 2014, 5, 5621. https://doi.org/10.1038/ncomms6621.
- 42.
Liang, Y.; Sarkar, M.K.; Tsoi, L.C.; Gudjonsson, J.E. Psoriasis: A mixed autoimmune and autoinflammatory disease. Curr. Opin. Immunol. 2017, 49, 1–8. https://doi.org/10.1016/j.coi.2017.07.007.
- 43.
Hiragun, T.; Ishii, K.; Hiragun, M.; Suzuki, H.; Kan, T.; Mihara, S.; Yanase, Y.; Bartels, J.; Schröder, J.M.; Hide, M. Fungal protein MGL_1304 in sweat is an allergen for atopic dermatitis patients. J. Allergy Clin. Immunol. 2013, 132, 608–615.e604. https://doi.org/10.1016/j.jaci.2013.03.047.
- 44.
Eyerich, K.; Eyerich, S. Immune response patterns in non-communicable inflammatory skin diseases. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 692–703. https://doi.org/10.1111/jdv.14673.
- 45.
Båve, U.; Magnusson, M.; Eloranta, M.L.; Perers, A.; Alm, G.V.; Rönnblom, L. Fc gamma RIIa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J. Immunol. 2003, 171, 3296–3302. https://doi.org/10.4049/jimmunol.171.6.3296.
- 46.
Ohl, K.; Tenbrock, K. Inflammatory cytokines in systemic lupus erythematosus. J. Biomed. Biotechnol. 2011, 2011, 432595. https://doi.org/10.1155/2011/432595.
- 47.
Zeng, L.; Xiang, W.; Xiao, W.; Wu, Y.; Sun, L. The emerging role of neutrophil extracellular traps in autoimmune and autoinflammatory diseases. MedComm 2025, 6, e70101. https://doi.org/10.1002/mco2.70101.
- 48.
Sepúlveda-Delgado, J.; Llorente, L.; Hernández-Doño, S. A Comprehensive Review of Fc Gamma Receptors and Their Role in Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2025, 26, 1851. https://doi.org/10.3390/ijms26051851.
- 49.
Yokota, K.; Sato, K.; Miyazaki, T.; Aizaki, Y.; Tanaka, S.; Sekikawa, M.; Kozu, N.; Kadono, Y.; Oda, H.; Mimura, T. Characterization and Function of Tumor Necrosis Factor and Interleukin-6-Induced Osteoclasts in Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 1145–1154. https://doi.org/10.1002/art.41666.
- 50.
Dayer, J.M.; Choy, E. Therapeutic targets in rheumatoid arthritis: The interleukin-6 receptor. Rheumatology 2010, 49, 15–24. https://doi.org/10.1093/rheumatology/kep329.
- 51.
Kany, S.; Vollrath, J.T.; Relja, B. Cytokines in Inflammatory Disease. Int. J. Mol. Sci. 2019, 20, 6008. https://doi.org/10.3390/ijms20236008.
- 52.
Crow, M.K. Pathogenesis of systemic lupus erythematosus: Risks, mechanisms and therapeutic targets. Ann. Rheum. Dis. 2023, 82, 999. https://doi.org/10.1136/ard-2022-223741.
- 53.
Zhou, X.; Chen, Y.; Cui, L.; Shi, Y.; Guo, C. Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis. 2022, 13, 81. https://doi.org/10.1038/s41419-022-04523-3.
- 54.
Chang, J.T. Pathophysiology of Inflammatory Bowel Diseases. N. Engl. J. Med. 2020, 383, 2652–2664, https://doi.org/10.1056/NEJMra2002697.
- 55.
Tam, L.S.; Gu, J.; Yu, D. Pathogenesis of ankylosing spondylitis. Nat. Rev. Rheumatol. 2010, 6, 399–405. https://doi.org/10.1038/nrrheum.2010.79.
- 56.
Alexander, M. Ankylosing Spondylitis Pathogenesis and Pathophysiology. In Ankylosing Spondylitis—Recent Concepts; Bruges Armas, J., Ed.; IntechOpen: Rijeka, Croatia, 2023.
- 57.
Dresser, L.; Wlodarski, R.; Rezania, K.; Soliven, B. Myasthenia Gravis: Epidemiology, Pathophysiology and Clinical Manifestations. J. Clin. Med. 2021, 10, 2235. https://doi.org/10.3390/jcm10112235.
- 58.
Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. https://doi.org/10.1038/s41413-018-0016-9.
- 59.
Keating, G.M. Mepolizumab: First Global Approval. Drugs 2015, 75, 2163–2169. https://doi.org/10.1007/s40265-015-0513-8.
- 60.
Bettiol, A.; Urban, M.L.; Dagna, L.; Cottin, V.; Franceschini, F.; Del Giacco, S.; Schiavon, F.; Neumann, T.; Lopalco, G.; Novikov, P.; et al. Mepolizumab for Eosinophilic Granulomatosis With Polyangiitis: A European Multicenter Observational Study. Arthritis Rheumatol. 2022, 74, 295–306. https://doi.org/10.1002/art.41943.
- 61.
Venkiteshwaran, A. Tocilizumab. MAbs 2009, 1, 432–438. https://doi.org/10.4161/mabs.1.5.9497.
- 62.
Scott, L.J. Tocilizumab: A Review in Rheumatoid Arthritis. Drugs 2017, 77, 1865–1879. https://doi.org/10.1007/s40265-017-0829-7.
- 63.
Antonio, A.A.; Santos, R.N.; Abariga, S.A. Tocilizumab for giant cell arteritis. Cochrane Database Syst. Rev. 2022, 5, Cd013484. https://doi.org/10.1002/14651858.CD013484.pub3.
- 64.
Scott, L.J. Sarilumab: First Global Approval. Drugs 2017, 77, 705–712. https://doi.org/10.1007/s40265-017-0724-2.
- 65.
Heo, Y.A. Satralizumab: First Approval. Drugs 2020, 80, 1477–1482. https://doi.org/10.1007/s40265-020-01380-2.
- 66.
Fung, S.; Shirley, M. Satralizumab: A Review in Neuromyelitis Optica Spectrum Disorder. CNS Drugs 2023, 37, 363–370. https://doi.org/10.1007/s40263-023-00995-9.
- 67.
Feist, E.; Fatenejad, S.; Grishin, S.; Korneva, E.; Luggen, M.E.; Nasonov, E.; Samsonov, M.; Smolen, J.S.; Fleischmann, R.M. Olokizumab, a monoclonal antibody against interleukin-6, in combination with methotrexate in patients with rheumatoid arthritis inadequately controlled by tumour necrosis factor inhibitor therapy: Efficacy and safety results of a randomised controlled phase III study. Ann. Rheum. Dis. 2022, 81, 1661–1668. https://doi.org/10.1136/ard-2022-222630.
- 68.
Olokizumab—IL-6 Inhibitor for Rheumatoid Arthritis. Available online: https://olokizumab.com/ (accessed on 25 March 2025).
- 69.
Takeuchi, T.; Thorne, C.; Karpouzas, G.; Sheng, S.; Xu, W.; Rao, R.; Fei, K.; Hsu, B.; Tak, P.P. Sirukumab for rheumatoid arthritis: The phase III SIRROUND-D study. Ann. Rheum. Dis. 2017, 76, 2001–2008. https://doi.org/10.1136/annrheumdis-2017-211328.
- 70.
Johnson. FDA Advisory Committee Does Not Recommend Approval of Sirukumab for the Treatment of Moderately to Severely Active Rheumatoid Arthritis. Available online: https://www.jnj.com/media-center/press-releases/fda-advisory-committee-does-not-recommend-approval-of-sirukumab-for-the-treatment-of-moderately-to-severely-active-rheumatoid-arthritis (accessed on 2 August 2017).
- 71.
Sanford, M.; McKeage, K. Secukinumab: First global approval. Drugs 2015, 75, 329–338. https://doi.org/10.1007/s40265-015-0359-0.
- 72.
Patel, D.D.; Lee, D.M.; Kolbinger, F.; Antoni, C. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann. Rheum. Dis. 2013, 72 (Suppl. 2), ii116–ii123. https://doi.org/10.1136/annrheumdis-2012-202371.
- 73.
Markham, A. Ixekizumab: First Global Approval. Drugs 2016, 76, 901–905. https://doi.org/10.1007/s40265-016-0579-y.
- 74.
Greig, S.L. Brodalumab: First Global Approval. Drugs 2016, 76, 1403–1412. https://doi.org/10.1007/s40265-016-0634-8.
- 75.
Benschop, R.J.; Chow, C.K.; Tian, Y.; Nelson, J.; Barmettler, B.; Atwell, S.; Clawson, D.; Chai, Q.; Jones, B.; Fitchett, J.; et al. Development of tibulizumab, a tetravalent bispecific antibody targeting BAFF and IL-17A for the treatment of autoimmune disease. MAbs 2019, 11, 1175–1190. https://doi.org/10.1080/19420862.2019.1624463.
- 76.
Frampton, J.E. Tildrakizumab: A Review in Moderate-to-Severe Plaque Psoriasis. Am. J. Clin. Dermatol. 2019, 20, 295–306. https://doi.org/10.1007/s40257-019-00435-9.
- 77.
Markham, A. Tildrakizumab: First Global Approval. Drugs 2018, 78, 845–849. https://doi.org/10.1007/s40265-018-0917-3.
- 78.
McKeage, K.; Duggan, S. Risankizumab: First Global Approval. Drugs 2019, 79, 893–900. https://doi.org/10.1007/s40265-019-01136-7.
- 79.
Markham, A. Guselkumab: First Global Approval. Drugs 2017, 77, 1487–1492. https://doi.org/10.1007/s40265-017-0800-7.
- 80.
Ustekinumab. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- 81.
Felten, R.; Scher, F.; Sagez, F.; Chasset, F.; Arnaud, L. Spotlight on anifrolumab and its potential for the treatment of moderate-to-severe systemic lupus erythematosus: Evidence to date. Drug Des. Dev. Ther. 2019, 13, 1535–1543. https://doi.org/10.2147/dddt.S170969.
- 82.
Deeks, E.D. Anifrolumab: First Approval. Drugs 2021, 81, 1795–1802. https://doi.org/10.1007/s40265-021-01604-z.
- 83.
Al-Salama, Z.T. Emapalumab: First Global Approval. Drugs 2019, 79, 99–103. https://doi.org/10.1007/s40265-018-1046-8.
- 84.
Fiorentino, D.; Mangold, A.R.; Werth, V.P.; Christopher-Stine, L.; Femia, A.; Chu, M.; Musiek, A.C.M.; Sluzevich, J.C.; Graham, L.V.; Fernandez, A.P.; et al. Efficacy, safety, and target engagement of dazukibart, an IFNβ specific monoclonal antibody, in adults with dermatomyositis: A multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2025, 405, 137–146. https://doi.org/10.1016/s0140-6736(24)02071-3.
- 85.
Dhimolea, E. Canakinumab. MAbs 2010, 2, 3–13. https://doi.org/10.4161/mabs.2.1.10328.
- 86.
Cardiel, M.H.; Tak, P.P.; Bensen, W.; Burch, F.X.; Forejtova, S.; Badurski, J.E.; Kakkar, T.; Bevirt, T.; Ni, L.; McCroskery, E.; et al. A phase 2 randomized, double-blind study of AMG 108, a fully human monoclonal antibody to IL-1R, in patients with rheumatoid arthritis. Arthritis Res. Ther. 2010, 12, R192. https://doi.org/10.1186/ar3163.
- 87.
Janssen Biotech, I. REMICADE® (infliximab) Official Website. Available online: https://www.remicade.com/ (accessed on 2 April 2025).
- 88.
Papoutsaki, M.; Osório, F.; Morais, P.; Torres, T.; Magina, S.; Chimenti, S.; Costanzo, A. Infliximab in psoriasis and psoriatic arthritis. BioDrugs 2013, 27 (Suppl. 1), 13–23. https://doi.org/10.1007/bf03325638.
- 89.
Smolen, J.S.; Emery, P. Infliximab: 12 years of experience. Arthritis Res. Ther. 2011, 13 (Suppl. 1), S2. https://doi.org/10.1186/1478-6354-13-s1-s2.
- 90.
Ellis, C.R.; Azmat, C.E. Adalimumab. In StatPearls; StatPearls: Treasure Island, FL, USA, 2025.
- 91.
Lapadula, G.; Marchesoni, A.; Armuzzi, A.; Blandizzi, C.; Caporali, R.; Chimenti, S.; Cimaz, R.; Cimino, L.; Gionchetti, P.; Girolomoni, G.; et al. Adalimumab in the treatment of immune-mediated diseases. Int. J. Immunopathol. Pharmacol. 2014, 27, 33–48. https://doi.org/10.1177/03946320140270s103.
- 92.
Hayashi, T. [Golimumab]. Nihon Rinsho 2013, 71, 1227–1231.
- 93.
Melo, A.T.; Campanilho-Marques, R.; Fonseca, J.E. Golimumab (anti-TNF monoclonal antibody): Where we stand today. Hum. Vaccines Immunother. 2021, 17, 1586–1598. https://doi.org/10.1080/21645515.2020.1836919.
- 94.
Delgado Frías, E.; Díaz González, J.F. [Certolizumab pegol]. Reumatol. Clin. 2011, 6, S7–S11. https://doi.org/10.1016/j.reuma.2010.11.011.
- 95.
Howard, J.F., Jr.; Utsugisawa, K.; Benatar, M.; Murai, H.; Barohn, R.J.; Illa, I.; Jacob, S.; Vissing, J.; Burns, T.M.; Kissel, J.T.; et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): A phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017, 16, 976–986. https://doi.org/10.1016/s1474-4422(17)30369-1.
- 96.
Pittock, S.J.; Berthele, A.; Fujihara, K.; Kim, H.J.; Levy, M.; Palace, J.; Nakashima, I.; Terzi, M.; Totolyan, N.; Viswanathan, S.; et al. Eculizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. N. Engl. J. Med. 2019, 381, 614–625. https://doi.org/10.1056/NEJMoa1900866.
- 97.
McKeage, K. Ravulizumab: First Global Approval. Drugs 2019, 79, 347–352. https://doi.org/10.1007/s40265-019-01068-2.
- 98.
Vieira, G.D.; Boldrini, V.O.; Mader, S.; Kümpfel, T.; Meinl, E.; Damasceno, A. Ravulizumab and other complement inhibitors for the treatment of autoimmune disorders. Mult. Scler. Relat. Disord. 2025, 95, 106311. https://doi.org/10.1016/j.msard.2025.106311.
- 99.
Syed, Y.Y. Ravulizumab: A Review in Atypical Haemolytic Uraemic Syndrome. Drugs 2021, 81, 587–594. https://doi.org/10.1007/s40265-021-01481-6.
- 100.
Meglio, M. Phase 3 PREVAIL Study to Test Bispecific Nanoantibody Gefurulimab in Generalized Myasthenia Gravis. Available online: https://www.neurologylive.com/view/phase-3-prevail-study-test-bispecific-nanoantibody-gefurulimab-generalized-myasthenia-gravis (accessed on 17 October 2024).
- 101.
Passeron, T.; Fontas, E.; Boye, T.; Richard, M.A.; Delaporte, E.; Dereure, O. Treatment of Bullous Pemphigoid with Avdoralimab: Multicenter, Randomized, Open-Labeled Phase 2 Study. JID Innov. 2024, 4, 100307. https://doi.org/10.1016/j.xjidi.2024.100307.
- 102.
Cellier, C.; Bouma, G.; van Gils, T.; Khater, S.; Malamut, G.; Crespo, L.; Collin, P.; Green, P.H.R.; Crowe, S.E.; Tsuji, W.; et al. Safety and efficacy of AMG 714 in patients with type 2 refractory coeliac disease: A phase 2a, randomised, double-blind, placebo-controlled, parallel-group study. Lancet Gastroenterol. Hepatol. 2019, 4, 960–970. https://doi.org/10.1016/s2468-1253(19)30265-1.
- 103.
Gsk. GSK Provides Update on ContRAst Phase III Programme for Otilimab in the Treatment of Moderate to Severe Rheumatoid Arthritis. Available online: https://www.gsk.com/en-gb/media/press-releases/gsk-provides-update-on-contrast-phase-iii-programme-for-otilimab-in-the-treatment-of-moderate-to-severe-rheumatoid-arthritis/ (accessed on 27 October 2022).
- 104.
Namilumab. Available online: https://www.semanticscholar.org/topic/Namilumab/2171881 (accessed on 2 April 2025).
- 105.
Boumans, M.J.; Houbiers, J.G.; Verschueren, P.; Ishikura, H.; Westhovens, R.; Brouwer, E.; Rojkovich, B.; Kelly, S.; den Adel, M.; Isaacs, J.; et al. Safety, tolerability, pharmacokinetics, pharmacodynamics and efficacy of the monoclonal antibody ASK8007 blocking osteopontin in patients with rheumatoid arthritis: A randomised, placebo controlled, proof-of-concept study. Ann. Rheum. Dis. 2012, 71, 180–185. https://doi.org/10.1136/annrheumdis-2011-200298.
- 106.
Astellas Pharma, I. Astellas Submits New Drug Application for Conditional Approval of Avacincaptad Pegol for Geographic Atrophy in Japan. Available online: https://www.astellas.com/en/news/12866 (accessed on 12 February 2025).
- 107.
Otsuka Pharmaceutical Co, L. Otsuka Files Biologics License Application (BLA) for Sibeprenlimab in the Treatment of Immunoglobulin A Nephropathy. Available online: https://www.otsuka.co.jp/en/company/newsreleases/2025/20250331_1.html (accessed on 31 March 2025).
- 108.
Aliyu, M.; Zohora, F.T.; Anka, A.U.; Ali, K.; Maleknia, S.; Saffarioun, M.; Azizi, G. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach. Int. Immunopharmacol. 2022, 111, 109130. https://doi.org/10.1016/j.intimp.2022.109130.
- 109.
Narazaki, M.; Kishimoto, T. The Two-Faced Cytokine IL-6 in Host Defense and Diseases. Int. J. Mol. Sci. 2018, 19, 3528. https://doi.org/10.3390/ijms19113528.
- 110.
Johnson, D.E.; O'Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018, 15, 234–248. https://doi.org/10.1038/nrclinonc.2018.8.
- 111.
Yao, X.; Huang, J.; Zhong, H.; Shen, N.; Faggioni, R.; Fung, M.; Yao, Y. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol. Ther. 2014, 141, 125–139. https://doi.org/10.1016/j.pharmthera.2013.09.004.
- 112.
Choy, E.H.; De Benedetti, F.; Takeuchi, T.; Hashizume, M.; John, M.R.; Kishimoto, T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 2020, 16, 335–345. https://doi.org/10.1038/s41584-020-0419-z.
- 113.
Genovese, M.C.; Fleischmann, R.; Kivitz, A.J.; Rell-Bakalarska, M.; Martincova, R.; Fiore, S.; Rohane, P.; van Hoogstraten, H.; Garg, A.; Fan, C.; et al. Sarilumab Plus Methotrexate in Patients With Active Rheumatoid Arthritis and Inadequate Response to Methotrexate: Results of a Phase III Study. Arthritis Rheumatol. 2015, 67, 1424–1437. https://doi.org/10.1002/art.39093.
- 114.
Chen, J.; Liu, X.; Zhong, Y. Interleukin-17A: The Key Cytokine in Neurodegenerative Diseases. Front. Aging Neurosci. 2020, 12, 566922. https://doi.org/10.3389/fnagi.2020.566922.
- 115.
von Stebut, E.; Boehncke, W.H.; Ghoreschi, K.; Gori, T.; Kaya, Z.; Thaci, D.; Schäffler, A. IL-17A in Psoriasis and Beyond: Cardiovascular and Metabolic Implications. Front. Immunol. 2019, 10, 3096. https://doi.org/10.3389/fimmu.2019.03096.
- 116.
Ke, Y.; Liu, K.; Huang, G.Q.; Cui, Y.; Kaplan, H.J.; Shao, H.; Sun, D. Anti-inflammatory role of IL-17 in experimental autoimmune uveitis. J. Immunol. 2009, 182, 3183–3190. https://doi.org/10.4049/jimmunol.0802487.
- 117.
Akhter, S.; Tasnim, F.M.; Islam, M.N.; Rauf, A.; Mitra, S.; Emran, T.B.; Alhumaydhi, F.A.; Khalil, A.A.; Aljohani, A.S.M.; Al Abdulmonem, W.; et al. Role of Th17 and IL-17 Cytokines on Inflammatory and Auto-immune Diseases. Curr. Pharm. Des. 2023, 29, 2078–2090. https://doi.org/10.2174/1381612829666230904150808.
- 118.
Krueger, J.G.; Wharton, K.A.; Schlitt, T.; Suprun, M.; Torene, R.I.; Jiang, X.; Wang, C.Q.; Fuentes-Duculan, J.; Hartmann, N.; Peters, T.; et al. IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J. Allergy Clin. Immunol. 2019, 144, 750–763. https://doi.org/10.1016/j.jaci.2019.04.029.
- 119.
Tang, C.; Chen, S.; Qian, H.; Huang, W. Interleukin-23: As a drug target for autoimmune inflammatory diseases. Immunology 2012, 135, 112–124. https://doi.org/10.1111/j.1365-2567.2011.03522.x.
- 120.
Krueger, J.G.; Eyerich, K.; Kuchroo, V.K.; Ritchlin, C.T.; Abreu, M.T.; Elloso, M.M.; Fourie, A.; Fakharzadeh, S.; Sherlock, J.P.; Yang, Y.W.; et al. IL-23 past, present, and future: A roadmap to advancing IL-23 science and therapy. Front. Immunol. 2024, 15, 1331217. https://doi.org/10.3389/fimmu.2024.1331217.
- 121.
Gaffen, S.L.; Jain, R.; Garg, A.V.; Cua, D.J. The IL-23–IL-17 immune axis: From mechanisms to therapeutic testing. Nat. Rev. Immunol. 2014, 14, 585–600. https://doi.org/10.1038/nri3707.
- 122.
Qu, N.; Xu, M.; Mizoguchi, I.; Furusawa, J.; Kaneko, K.; Watanabe, K.; Mizuguchi, J.; Itoh, M.; Kawakami, Y.; Yoshimoto, T. Pivotal roles of T-helper 17-related cytokines, IL-17, IL-22, and IL-23, in inflammatory diseases. Clin. Dev. Immunol. 2013, 2013, 968549. https://doi.org/10.1155/2013/968549.
- 123.
Gerber, A.N.; Abdi, K.; Singh, N.J. The subunits of IL-12, originating from two distinct cells, can functionally synergize to protect against pathogen dissemination in vivo. Cell Rep. 2021, 37, 109816. https://doi.org/10.1016/j.celrep.2021.109816.
- 124.
Girolomoni, G.; Strohal, R.; Puig, L.; Bachelez, H.; Barker, J.; Boehncke, W.H.; Prinz, J.C. The role of IL-23 and the IL-23/T(H) 17 immune axis in the pathogenesis and treatment of psoriasis. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 1616–1626. https://doi.org/10.1111/jdv.14433.
- 125.
Fragoulis, G.E.; Siebert, S. The role of IL-23 and the use of IL-23 inhibitors in psoriatic arthritis. Musculoskelet. Care 2022, 20 (Suppl 1), S12–S21. https://doi.org/10.1002/msc.1694.
- 126.
Mease, P.J.; McInnes, I.B.; Tam, L.-S.; Eaton, K.; Peterson, S.; Schubert, A.; Chakravarty, S.D.; Parackal, A.; Karyekar, C.S.; Nair, S.; et al. Comparative effectiveness of guselkumab in psoriatic arthritis: Results from systematic literature review and network meta-analysis. Rheumatology 2021, 60, 2109–2121. https://doi.org/10.1093/rheumatology/keab119.
- 127.
Koutruba, N.; Emer, J.; Lebwohl, M. Review of ustekinumab, an interleukin-12 and interleukin-23 inhibitor used for the treatment of plaque psoriasis. Ther. Clin. Risk Manag. 2010, 6, 123–141. https://doi.org/10.2147/tcrm.s5599.
- 128.
Billiau, A. Interferon-gamma in autoimmunity. Cytokine Growth Factor Rev. 1996, 7, 25–34. https://doi.org/10.1016/1359-6101(96)00004-4.
- 129.
Lyu, X.; Zhao, Q.; Hui, J.; Wang, T.; Lin, M.; Wang, K.; Zhang, J.; Shentu, J.; Dalby, P.A.; Zhang, H.; et al. The global landscape of approved antibody therapies. Antib. Ther. 2022, 5, 233–257. https://doi.org/10.1093/abt/tbac021.
- 130.
Merli, P.; Algeri, M.; Gaspari, S.; Locatelli, F. Novel Therapeutic Approaches to Familial HLH (Emapalumab in FHL). Front. Immunol. 2020, 11, 608492. https://doi.org/10.3389/fimmu.2020.608492.
- 131.
Manivasagam, S.; Williams, J.L.; Vollmer, L.L.; Bollman, B.; Bartleson, J.M.; Ai, S.; Wu, G.F.; Klein, R.S. Targeting IFN-λ Signaling Promotes Recovery from Central Nervous System Autoimmunity. J. Immunol. 2022, 208, 1341–1351. https://doi.org/10.4049/jimmunol.2101041.
- 132.
Goel, R.R.; Wang, X.; O'Neil, L.J.; Nakabo, S.; Hasneen, K.; Gupta, S.; Wigerblad, G.; Blanco, L.P.; Kopp, J.B.; Morasso, M.I.; et al. Interferon lambda promotes immune dysregulation and tissue inflammation in TLR7-induced lupus. Proc. Natl. Acad. Sci. USA 2020, 117, 5409–5419. https://doi.org/10.1073/pnas.1916897117.
- 133.
Xu, L.; Peng, Q.; Xuan, W.; Feng, X.; Kong, X.; Zhang, M.; Tan, W.; Xue, M.; Wang, F. Interleukin-29 Enhances Synovial Inflammation and Cartilage Degradation in Osteoarthritis. Mediat. Inflamm. 2016, 2016, 9631510. https://doi.org/10.1155/2016/9631510.
- 134.
Chiriac, M.T.; Buchen, B.; Wandersee, A.; Hundorfean, G.; Günther, C.; Bourjau, Y.; Doyle, S.E.; Frey, B.; Ekici, A.B.; Büttner, C.; et al. Activation of Epithelial Signal Transducer and Activator of Transcription 1 by Interleukin 28 Controls Mucosal Healing in Mice With Colitis and Is Increased in Mucosa of Patients With Inflammatory Bowel Disease. Gastroenterology 2017, 153, 123–138.e128. https://doi.org/10.1053/j.gastro.2017.03.015.
- 135.
Barnabei, L.; Laplantine, E.; Mbongo, W.; Rieux-Laucat, F.; Weil, R. NF-κB: At the Borders of Autoimmunity and Inflammation. Front. Immunol. 2021, 12, 716469. https://doi.org/10.3389/fimmu.2021.716469.
- 136.
Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. https://doi.org/10.3390/ijms22052719.
- 137.
Malemud, C.J. Defective JAK-STAT Pathway Signaling Contributes to Autoimmune Diseases. Curr. Pharmacol. Rep. 2018, 4, 358–366. https://doi.org/10.1007/s40495-018-0151-4.
- 138.
Leone, G.M.; Mangano, K.; Petralia, M.C.; Nicoletti, F.; Fagone, P. Past, Present and (Foreseeable) Future of Biological Anti-TNF Alpha Therapy. J. Clin. Med. 2023, 12, 1630. https://doi.org/10.3390/jcm12041630.
- 139.
Miserocchi, E.; Giulio, M.; Irene, P.; Luigi, M.P.; and Gerloni, V. Long-term Treatment with Golimumab for Severe Uveitis. Ocul. Immunol. Inflamm. 2014, 22, 90–95. https://doi.org/10.3109/09273948.2013.844265.
- 140.
Venhoff, N.; Thiel, J.; Schramm, M.A.; Jandova, I.; Voll, R.E.; Glaser, C. Case Report: Effective and Safe Treatment With Certolizumab Pegol in Pregnant Patients With Cogan's Syndrome: A Report of Three Pregnancies in Two Patients. Front. Immunol. 2020, 11, 616992. https://doi.org/10.3389/fimmu.2020.616992.
- 141.
Atzeni, F.; Talotta, R.; Salaffi, F.; Cassinotti, A.; Varisco, V.; Battellino, M.; Ardizzone, S.; Pace, F.; Sarzi-Puttini, P. Immunogenicity and autoimmunity during anti-TNF therapy. Autoimmun. Rev. 2013, 12, 703–708. https://doi.org/10.1016/j.autrev.2012.10.021.
- 142.
González-Lama, Y.; Ricart, E.; Carpio, D.; Bastida, G.; Ceballos, D.; Ginard, D.; Marin-Jimenez, I.; Menchen, L.; Muñoz, F. Controversies in the management of anti-TNF therapy in patients with Crohn's disease: A Delphi consensus. BMJ Open Gastroenterol. 2024, 11, e001246. https://doi.org/10.1136/bmjgast-2023-001246.
- 143.
Bettiol, A.; Lopalco, G.; Emmi, G.; Cantarini, L.; Urban, M.L.; Vitale, A.; Denora, N.; Lopalco, A.; Cutrignelli, A.; Lopedota, A.; et al. Unveiling the Efficacy, Safety, and Tolerability of Anti-Interleukin-1 Treatment in Monogenic and Multifactorial Autoinflammatory Diseases. Int. J. Mol. Sci. 2019, 20, 1898. https://doi.org/10.3390/ijms20081898.
- 144.
Semo-Oz, R.; Biton, B.; Tesher, M.S. The Role of Anti-IL-1 Medications in Autoinflammatory Disease. Pediatr. Ann. 2022, 51, e72–e76. https://doi.org/10.3928/19382359-20220115-01.
- 145.
Dinarello, C.A. Treatment of Inflammatory Diseases with IL-1 Blockade. Curr. Otorhinolaryngol. Rep. 2018, 6, 1–14. https://doi.org/10.1007/s40136-018-0181-9.
- 146.
Arnold, D.D.; Yalamanoglu, A.; Boyman, O. Systematic Review of Safety and Efficacy of IL-1-Targeted Biologics in Treating Immune-Mediated Disorders. Front. Immunol. 2022, 13, 888392. https://doi.org/10.3389/fimmu.2022.888392.
- 147.
Vitale, A.; Berlengiero, V.; Sota, J.; Ciarcia, L.; Ricco, N.; Barneschi, S.; Mourabi, M.; Lopalco, G.; Marzo, C.; Bellisai, F.; et al. Real-Life Data on the Efficacy of Canakinumab in Patients with Adult-Onset Still's Disease. Mediat. Inflamm. 2020, 2020, 8054961. https://doi.org/10.1155/2020/8054961.
- 148.
Sanz-Cabanillas, J.L.; Gómez-García, F.; Gómez-Arias, P.J.; Montilla-López, A.; Gay-Mimbrera, J.; Ruano, J.; Isla-Tejera, B.; Parra-Peralbo, E. Efficacy and safety of anakinra and canakinumab in PSTPIP1-associated inflammatory diseases: A comprehensive scoping review. Front. Immunol. 2023, 14, 1339337. https://doi.org/10.3389/fimmu.2023.1339337.
- 149.
García-Cuesta, E.M.; Santiago, C.A.; Vallejo-Díaz, J.; Juarranz, Y.; Rodríguez-Frade, J.M.; Mellado, M. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front. Endocrinol. 2019, 10, 585. https://doi.org/10.3389/fendo.2019.00585.
- 150.
Furue, K.; Ito, T.; Tsuji, G.; Nakahara, T.; Furue, M. The CCL20 and CCR6 axis in psoriasis. Scand. J. Immunol. 2020, 91, e12846. https://doi.org/10.1111/sji.12846.
- 151.
Brunner, P.M.; Koszik, F.; Reininger, B.; Kalb, M.L.; Bauer, W.; Stingl, G. Infliximab induces downregulation of the IL-12/IL-23 axis in 6-sulfo-LacNac (slan)+ dendritic cells and macrophages. J. Allergy Clin. Immunol. 2013, 132, 1184–1193.e1188. https://doi.org/10.1016/j.jaci.2013.05.036.
- 152.
Mabuchi, T.; Singh, T.P.; Takekoshi, T.; Jia, G.-f.; Wu, X.; Kao, M.C.; Weiss, I.; Farber, J.M.; Hwang, S.T. CCR6 Is Required for Epidermal Trafficking of γδ-T Cells in an IL-23-Induced Model of Psoriasiform Dermatitis. J. Investig. Dermatol. 2013, 133, 164–171. https://doi.org/10.1038/jid.2012.260.
- 153.
Luong, V.H.; Utsunomiya, A.; Chino, T.; Doanh, L.H.; Matsushita, T.; Obara, T.; Kuboi, Y.; Ishii, N.; Machinaga, A.; Ogasawara, H.; et al. Inhibition of the Progression of Skin Inflammation, Fibrosis, and Vascular Injury by Blockade of the CX(3) CL1/CX(3) CR1 Pathway in Experimental Mouse Models of Systemic Sclerosis. Arthritis Rheumatol. 2019, 71, 1923–1934. https://doi.org/10.1002/art.41009.
- 154.
Hasegawa, T.; Utsunomiya, A.; Chino, T.; Kasamatsu, H.; Shimizu, T.; Matsushita, T.; Obara, T.; Ishii, N.; Ogasawara, H.; Ikeda, W.; et al. Anti-CX3CL1 (fractalkine) monoclonal antibody attenuates lung and skin fibrosis in sclerodermatous graft-versus-host disease mouse model. Arthritis Res. Ther. 2024, 26, 94. https://doi.org/10.1186/s13075-024-03307-8.
- 155.
Nie, Y.; Han, Y.C.; Zou, Y.R. CXCR4 is required for the quiescence of primitive hematopoietic cells. J. Exp. Med. 2008, 205, 777–783. https://doi.org/10.1084/jem.20072513.
- 156.
Mondello, C.; Ventura Spagnolo, E.; Cardia, L.; Sapienza, D.; Scurria, S.; Gualniera, P.; Asmundo, A. Membrane Attack Complex in Myocardial Ischemia/Reperfusion Injury: A Systematic Review for Post Mortem Applications. Diagnostics 2020, 10, 898.
- 157.
Morgan, B.P. Inhibition of Complement in the Membrane Attack Pathway. In Therapeutic Interventions in the Complement System; Lambris, J.D., Holers, V.M., Eds.; Humana Press: Totowa, NJ, USA, 2000; pp. 205–224.
- 158.
Xie, C.B.; Jane-Wit, D.; Pober, J.S. Complement Membrane Attack Complex: New Roles, Mechanisms of Action, and Therapeutic Targets. Am. J. Pathol. 2020, 190, 1138–1150. https://doi.org/10.1016/j.ajpath.2020.02.006.
- 159.
Morgan, B.P.; Boyd, C.; Bubeck, D. Molecular cell biology of complement membrane attack. Semin. Cell Dev. Biol. 2017, 72, 124–132. https://doi.org/10.1016/j.semcdb.2017.06.009.
- 160.
Hillmen, P.; Young, N.S.; Schubert, J.; Brodsky, R.A.; Socié, G.; Muus, P.; Röth, A.; Szer, J.; Elebute, M.O.; Nakamura, R.; et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 2006, 355, 1233–1243. https://doi.org/10.1056/NEJMoa061648.
- 161.
Ricciardi, D.; Erra, C.; Tuccillo, F.; De Martino, B.M.; Fasolino, A.; Habetswallner, F. Eculizumab in refractory myasthenia gravis: A real-world single-center experience. Neurol. Sci. 2025, 46, 951–959. https://doi.org/10.1007/s10072-024-07861-6.
- 162.
Lee, J.W.; Sicre de Fontbrune, F.; Wong Lee Lee, L.; Pessoa, V.; Gualandro, S.; Füreder, W.; Ptushkin, V.; Rottinghaus, S.T.; Volles, L.; Shafner, L.; et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: The 301 study. Blood 2019, 133, 530–539. https://doi.org/10.1182/blood-2018-09-876136.
- 163.
Kulasekararaj, A.G.; Hill, A.; Rottinghaus, S.T.; Langemeijer, S.; Wells, R.; Gonzalez-Fernandez, F.A.; Gaya, A.; Lee, J.W.; Gutierrez, E.O.; Piatek, C.I.; et al. Ravulizumab (ALXN1210) vs eculizumab in C5-inhibitor-experienced adult patients with PNH: The 302 study. Blood 2019, 133, 540–549. https://doi.org/10.1182/blood-2018-09-876805.
- 164.
Camporeale, A.; Poli, V. IL-6, IL-17 and STAT3: A holy trinity in auto-immunity? Front. Biosci. 2012, 17, 2306–2326. https://doi.org/10.2741/4054.
- 165.
Korn, T.; Hiltensperger, M. Role of IL-6 in the commitment of T cell subsets. Cytokine 2021, 146, 155654. https://doi.org/10.1016/j.cyto.2021.155654.
- 166.
Grailer, J.J.; Bosmann, M.; Ward, P.A. Regulatory effects of C5a on IL-17A, IL-17F, and IL-23. Front. Immunol. 2012, 3, 387. https://doi.org/10.3389/fimmu.2012.00387.
- 167.
Chen, X.W.; Zhou, S.F. Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis. Drug Des. Dev. Ther. 2015, 9, 2941–2946. https://doi.org/10.2147/dddt.S86396.
- 168.
Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024, 9, 53. https://doi.org/10.1038/s41392-024-01757-9.
- 169.
Hu, X.; li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021, 6, 402. https://doi.org/10.1038/s41392-021-00791-1.
- 170.
Kiefer, K.; Oropallo, M.A.; Cancro, M.P.; Marshak-Rothstein, A. Role of type I interferons in the activation of autoreactive B cells. Immunol. Cell Biol. 2012, 90, 498–504. https://doi.org/10.1038/icb.2012.10.
- 171.
Ploeger, C.; Schreck, J.; Huth, T.; Fraas, A.; Albrecht, T.; Charbel, A.; Ji, J.; Singer, S.; Breuhahn, K.; Pusch, S.; et al. STAT1 and STAT3 Exhibit a Crosstalk and Are Associated with Increased Inflammation in Hepatocellular Carcinoma. Cancers 2022, 14, 1154. https://doi.org/10.3390/cancers14051154.
- 172.
Nording, H.; Baron, L.; Haberthür, D.; Emschermann, F.; Mezger, M.; Sauter, M.; Sauter, R.; Patzelt, J.; Knoepp, K.; Nording, A.; et al. The C5a/C5a receptor 1 axis controls tissue neovascularization through CXCL4 release from platelets. Nat. Commun. 2021, 12, 3352. https://doi.org/10.1038/s41467-021-23499-w.
- 173.
Liu, B.; Wei, L.; Meyerle, C.; Tuo, J.; Sen, H.N.; Li, Z.; Chakrabarty, S.; Agron, E.; Chan, C.-C.; Klein, M.L.; et al. Complement component C5a Promotes Expression of IL-22 and IL-17 from Human T cells and its Implication in Age-related Macular Degeneration. J. Transl. Med. 2011, 9, 111. https://doi.org/10.1186/1479-5876-9-111.
- 174.
Hirota, K.; Yoshitomi, H.; Hashimoto, M.; Maeda, S.; Teradaira, S.; Sugimoto, N.; Yamaguchi, T.; Nomura, T.; Ito, H.; Nakamura, T.; et al. Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J. Exp. Med. 2007, 204, 2803–2812. https://doi.org/10.1084/jem.20071397.
- 175.
Guo, F.; Wang, Y.; Liu, J.; Mok, S.C.; Xue, F.; Zhang, W. CXCL12/CXCR4: A symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016, 35, 816–826. https://doi.org/10.1038/onc.2015.139.
- 176.
Szukiewicz, D. CX3CL1 (Fractalkine)-CX3CR1 Axis in Inflammation-Induced Angiogenesis and Tumorigenesis. Int. J. Mol. Sci. 2024, 25, 4679. https://doi.org/10.3390/ijms25094679.
- 177.
Lin, A.; Giuliano, C.J.; Palladino, A.; John, K.M.; Abramowicz, C.; Yuan, M.L.; Sausville, E.L.; Lukow, D.A.; Liu, L.; Chait, A.R.; et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 2019, 11, eaaw8412. https://doi.org/10.1126/scitranslmed.aaw8412.
- 178.
Bumbaca, D.; Wong, A.; Drake, E.; Reyes, A.E., 2nd; Lin, B.C.; Stephan, J.P.; Desnoyers, L.; Shen, B.Q.; Dennis, M.S. Highly specific off-target binding identified and eliminated during the humanization of an antibody against FGF receptor 4. MAbs 2011, 3, 376–386. https://doi.org/10.4161/mabs.3.4.15786.
- 179.
Xiang, D.; Zheng, C.; Zhou, S.F.; Qiao, S.; Tran, P.H.; Pu, C.; Li, Y.; Kong, L.; Kouzani, A.Z.; Lin, J.; et al. Superior Performance of Aptamer in Tumor Penetration over Antibody: Implication of Aptamer-Based Theranostics in Solid Tumors. Theranostics 2015, 5, 1083–1097. https://doi.org/10.7150/thno.11711.
- 180.
Lu, G.; Nishio, N.; van den Berg, N.S.; Martin, B.A.; Fakurnejad, S.; van Keulen, S.; Colevas, A.D.; Thurber, G.M.; Rosenthal, E.L. Co-administered antibody improves penetration of antibody–dye conjugate into human cancers with implications for antibody–drug conjugates. Nat. Commun. 2020, 11, 5667. https://doi.org/10.1038/s41467-020-19498-y.
- 181.
Howard, E.L.; Goens, M.M.; Susta, L.; Patel, A.; Wootton, S.K. Anti-Drug Antibody Response to Therapeutic Antibodies and Potential Mitigation Strategies. Biomedicines 2025, 13, 299. https://doi.org/10.3390/biomedicines13020299.
- 182.
Arneth, B. Molecular Mechanisms of Immune Regulation: A Review. Cells 2025, 14, 283. https://doi.org/10.3390/cells14040283.
- 183.
Singh, S.; George, J.; Boland, B.S.; Vande Casteele, N.; Sandborn, W.J. Primary Non-Response to Tumor Necrosis Factor Antagonists is Associated with Inferior Response to Second-line Biologics in Patients with Inflammatory Bowel Diseases: A Systematic Review and Meta-analysis. J. Crohns Colitis 2018, 12, 635–643. https://doi.org/10.1093/ecco-jcc/jjy004.
- 184.
Fine, S.; Papamichael, K.; Cheifetz, A.S. Etiology and Management of Lack or Loss of Response to Anti-Tumor Necrosis Factor Therapy in Patients With Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2019, 15, 656–665.
- 185.
Tao, W.; Concepcion, A.N.; Vianen, M.; Marijnissen, A.C.A.; Lafeber, F.; Radstake, T.; Pandit, A. Multiomics and Machine Learning Accurately Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 212–222. https://doi.org/10.1002/art.41516.
- 186.
Foulquier, N.; Le Dantec, C.; Bettacchioli, E.; Jamin, C.; Alarcón-Riquelme, M.E.; Pers, J.O. Machine Learning for the Identification of a Common Signature for Anti-SSA/Ro 60 Antibody Expression Across Autoimmune Diseases. Arthritis Rheumatol. 2022, 74, 1706–1719. https://doi.org/10.1002/art.42243.
- 187.
Tasaki, S.; Suzuki, K.; Kassai, Y.; Takeshita, M.; Murota, A.; Kondo, Y.; Ando, T.; Nakayama, Y.; Okuzono, Y.; Takiguchi, M.; et al. Multi-omics monitoring of drug response in rheumatoid arthritis in pursuit of molecular remission. Nat. Commun. 2018, 9, 2755. https://doi.org/10.1038/s41467-018-05044-4.
- 188.
Zhao, Q. Bispecific Antibodies for Autoimmune and Inflammatory Diseases: Clinical Progress to Date. BioDrugs 2020, 34, 111–119. https://doi.org/10.1007/s40259-019-00400-2.
- 189.
Sedykh, S.E.; Prinz, V.V.; Buneva, V.N.; Nevinsky, G.A. Bispecific antibodies: Design, therapy, perspectives. Drug Des. Dev. Ther. 2018, 12, 195–208. https://doi.org/10.2147/dddt.S151282.
- 190.
Biesemann, N.; Margerie, D.; Asbrand, C.; Rehberg, M.; Savova, V.; Agueusop, I.; Klemmer, D.; Ding-Pfennigdorff, D.; Schwahn, U.; Dudek, M.; et al. Additive efficacy of a bispecific anti-TNF/IL-6 nanobody compound in translational models of rheumatoid arthritis. Sci. Transl. Med. 2023, 15, eabq4419. https://doi.org/10.1126/scitranslmed.abq4419.
- 191.
Perico, L.; Casiraghi, F.; Sônego, F.; Todeschini, M.; Corna, D.; Cerullo, D.; Pezzotta, A.; Isnard-Petit, P.; Faravelli, S.; Forneris, F.; et al. Bi-specific autoantigen-T cell engagers as targeted immunotherapy for autoreactive B cell depletion in autoimmune diseases. Front. Immunol. 2024, 15, 1335998. https://doi.org/10.3389/fimmu.2024.1335998.
- 192.
Lamendour, L.; Gilotin, M.; Deluce-Kakwata Nkor, N.; Lakhrif, Z.; Meley, D.; Poupon, A.; Laboute, T.; di Tommaso, A.; Pin, J.J.; Mulleman, D.; et al. Bispecific antibodies tethering innate receptors induce human tolerant-dendritic cells and regulatory T cells. Front. Immunol. 2024, 15, 1369117. https://doi.org/10.3389/fimmu.2024.1369117.
- 193.
Chennapragada, S.S.; Ramadas, P. Bispecific Antibody Toxicity. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2025.
- 194.
Bellando-Randone, S.; Della-Torre, E.; Balanescu, A. The role of interleukin-17 in the pathogenesis of systemic sclerosis: Pro-fibrotic or anti-fibrotic? J. Scleroderma Relat. Disord. 2021, 6, 227–235. https://doi.org/10.1177/23971983211039421.
- 195.
Scaletti, C.; Pratesi, S.; Bellando Randone, S.; Di Pietro, L.; Campochiaro, C.; Annunziato, F.; Matucci Cerinic, M. The B-cells paradigm in systemic sclerosis: An update on pathophysiology and B-cell-targeted therapies. Clin. Exp. Immunol. 2025, 219, uxae098. https://doi.org/10.1093/cei/uxae098.
- 196.
Howell, M.; Nistala, K.; Faghihi, P.; Sattar, A.; Sidhu, S. POS0373 Phase 1 Clinical Trial Evaluating the Pharmacokinetics and Pharmacodynamics of a Novel Il-17a and Baff Dual Antagonist in Sjogren’s Syndrome. Ann. Rheum. Dis. 2024, 83, 362–362. https://doi.org/10.1136/annrheumdis-2024-eular.6282.
- 197.
Dixit, T.; Vaidya, A.; Ravindran, S. Therapeutic potential of antibody-drug conjugates possessing bifunctional anti-inflammatory action in the pathogenies of rheumatoid arthritis. Arthritis Res. Ther. 2024, 26, 216. https://doi.org/10.1186/s13075-024-03452-0.
- 198.
Huang, Z.; Braunstein, Z.; Chen, J.; Wei, Y.; Rao, X.; Dong, L.; Zhong, J. Precision Medicine in Rheumatic Diseases: Unlocking the Potential of Antibody-Drug Conjugates. Pharmacol. Rev. 2024, 76, 579–598. https://doi.org/10.1124/pharmrev.123.001084.
- 199.
Birrer, M.J.; Moore, K.N.; Betella, I.; Bates, R.C. Antibody-Drug Conjugate-Based Therapeutics: State of the Science. J. Natl. Cancer Inst. 2019, 111, 538–549. https://doi.org/10.1093/jnci/djz035.
- 200.
Li, X.; Zhang, Y.; Li, B.; Li, J.; Qiu, Y.; Zhu, Z.; Hua, H. An immunomodulatory antibody-drug conjugate targeting BDCA2 strongly suppresses plasmacytoid dendritic cell function and glucocorticoid responsive genes. Rheumatology 2024, 63, 242–250. https://doi.org/10.1093/rheumatology/kead219.
- 201.
Zhang, L.; Luo, L.; Chen, J.Y.; Singh, R.; Baldwin, W.M., 3rd; Fox, D.A.; Lindner, D.J.; Martin, D.F.; Caspi, R.R.; Lin, F. A CD6-targeted antibody-drug conjugate as a potential therapy for T cell-mediated disorders. JCI Insight 2023, 8, 172914. https://doi.org/10.1172/jci.insight.172914.
- 202.
Fukushima, H.; Furusawa, A.; Takao, S.; Thankarajan, E.; Luciano, M.P.; Usama, S.M.; Kano, M.; Okuyama, S.; Yamamoto, H.; Suzuki, M.; et al. Near-infrared duocarmycin photorelease from a Treg-targeted antibody-drug conjugate improves efficacy of PD-1 blockade in syngeneic murine tumor models. Oncoimmunology 2024, 13, 2370544. https://doi.org/10.1080/2162402x.2024.2370544.
- 203.
Muthana, M.M.; Du, X.; Liu, M.; Wang, X.; Wu, W.; Ai, C.; Su, L.; Zheng, P.; Liu, Y. CTLA-4 antibody-drug conjugate reveals autologous destruction of B-lymphocytes associated with regulatory T cell impairment. Elife 2023, 12, 87281. https://doi.org/10.7554/eLife.87281.
- 204.
Buttgereit, F.; Aelion, J.; Rojkovich, B.; Zubrzycka-Sienkiewicz, A.; Chen, S.; Yang, Y.; Arikan, D.; D'Cunha, R.; Pang, Y.; Kupper, H.; et al. Efficacy and Safety of ABBV-3373, a Novel Anti-Tumor Necrosis Factor Glucocorticoid Receptor Modulator Antibody-Drug Conjugate, in Adults with Moderate-to-Severe Rheumatoid Arthritis Despite Methotrexate Therapy: A Randomized, Double-Blind, Active-Controlled Proof-of-Concept Phase IIa Trial. Arthritis Rheumatol. 2023, 75, 879–889. https://doi.org/10.1002/art.42415.
- 205.
Hobson, A.D.; Xu, J.; Welch, D.S.; Marvin, C.C.; McPherson, M.J.; Gates, B.; Liao, X.; Hollmann, M.; Gattner, M.J.; Dzeyk, K.; et al. Discovery of ABBV-154, an anti-TNF Glucocorticoid Receptor Modulator Immunology Antibody-Drug Conjugate (iADC). J. Med. Chem. 2023, 66, 12544–12558. https://doi.org/10.1021/acs.jmedchem.3c01174.
- 206.
Buttgereit, F.; Singhal, A.; Kivitz, A.; Drescher, E.; Taniguchi, Y.; Pérez, R.M.; Anderson, J.; D'Cunha, R.; Zhao, W.; DeVogel, N.; et al. Efficacy and Safety of ABBV-154 for the Treatment of Active Rheumatoid Arthritis: A Phase 2b, Randomized, Placebo-Controlled Trial. Arthritis Rheumatol. 2025. https://doi.org/10.1002/art.43266.
- 207.
Li, X.; Li, B.; Yao, J.; Liu, S.; Shi, R.; Zhang, Y.; Zhu, Z.; Qiu, Y.; Hua, H. DB-2304, a Duality Immune Modulating Antibody‒Drug Conjugate (DIMAC) targeting BDCA2, displays strong potency in the suppression of pDC functions. J. Immunol. 2024, 212, 1410_4306. https://doi.org/10.4049/jimmunol.212.supp.1410.4306.
- 208.
Delidakis, G.; Kim, J.E.; George, K.; Georgiou, G. Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations. Annu. Rev. Biomed. Eng. 2022, 24, 249–274. https://doi.org/10.1146/annurev-bioeng-082721-024500.
- 209.
Lazar, G.A.; Dang, W.; Karki, S.; Vafa, O.; Peng, J.S.; Hyun, L.; Chan, C.; Chung, H.S.; Eivazi, A.; Yoder, S.C.; et al. Engineered antibody Fc variants with enhanced effector function. Proc. Natl. Acad. Sci. USA 2006, 103, 4005–4010. https://doi.org/10.1073/pnas.0508123103.
- 210.
García-Alija, M.; van Moer, B.; Sastre, D.E.; Azzam, T.; Du, J.J.; Trastoy, B.; Callewaert, N.; Sundberg, E.J.; Guerin, M.E. Modulating antibody effector functions by Fc glycoengineering. Biotechnol. Adv. 2023, 67, 108201. https://doi.org/10.1016/j.biotechadv.2023.108201.
- 211.
Kitanaga, Y.; Yamajuku, D.; Kubo, S.; Nakamura, K.; Maeda, M.; Seki, M.; Kaneko, Y.; Kinugasa, F.; Morokata, T.; Kondo, Y.; et al. Discovery of a novel Igβ and FcγRIIB cross-linking antibody, ASP2713, and its potential application in the treatment of systemic lupus erythematosus. Int. Immunopharmacol. 2021, 101, 108343. https://doi.org/10.1016/j.intimp.2021.108343.
- 212.
Shi, L.; Yu, M.; Jin, Y.; Chen, P.; Mu, G.; Tam, S.H.; Cho, M.; Tornetta, M.; Han, C.; Fung, M.C.; et al. A novel monoclonal antibody against human thymic stromal lymphopoietin for the treatment of TSLP-mediated diseases. Front. Immunol. 2024, 15, 1442588. https://doi.org/10.3389/fimmu.2024.1442588.
- 213.
Chu, S.Y.; Yeter, K.; Kotha, R.; Pong, E.; Miranda, Y.; Phung, S.; Chen, H.; Lee, S.H.; Leung, I.; Bonzon, C.; et al. Suppression of rheumatoid arthritis B cells by XmAb5871, an anti-CD19 antibody that coengages B cell antigen receptor complex and Fcγ receptor IIb inhibitory receptor. Arthritis Rheumatol. 2014, 66, 1153–1164. https://doi.org/10.1002/art.38334.
- 214.
Hezareh, M.; Hessell, A.J.; Jensen, R.C.; van de Winkel, J.G.; Parren, P.W. Effector function activities of a panel of mutants of a broadly neutralizing antibody against human immunodeficiency virus type 1. J. Virol. 2001, 75, 12161–12168. https://doi.org/10.1128/jvi.75.24.12161-12168.2001.
- 215.
Li, M.; Zhao, R.; Chen, J.; Tian, W.; Xia, C.; Liu, X.; Li, Y.; Li, S.; Sun, H.; Shen, T.; et al. Next generation of anti-PD-L1 Atezolizumab with enhanced anti-tumor efficacy in vivo. Sci. Rep. 2021, 11, 5774. https://doi.org/10.1038/s41598-021-85329-9.
- 216.
Moore, G.L.; Chen, H.; Karki, S.; Lazar, G.A. Engineered Fc variant antibodies with enhanced ability to recruit complement and mediate effector functions. MAbs 2010, 2, 181–189. https://doi.org/10.4161/mabs.2.2.11158.
- 217.
Sondermann, P.; Szymkowski, D.E. Harnessing Fc receptor biology in the design of therapeutic antibodies. Curr. Opin. Immunol. 2016, 40, 78–87. https://doi.org/10.1016/j.coi.2016.03.005.
- 218.
Merrill, J.T.; Guthridge, J.; Zack, D.; Foster, P.; Burington, B.; Tran, L.; Smith, M.; James, J.A. SAT0187 discrimination of Systemic Lupus (SLE) patients with clinical response to Obexelimab (XMAB®5871) based on a pattern of immunologic markers. Ann. Rheum. Dis. 2020, 79, 1035–1036. https://doi.org/10.1136/annrheumdis-2020-eular.2972.
- 219.
Wang, X.; Mathieu, M.; Brezski, R.J. IgG Fc engineering to modulate antibody effector functions. Protein Cell 2018, 9, 63–73. https://doi.org/10.1007/s13238-017-0473-8.
- 220.
Crescioli, S.; Kaplon, H.; Wang, L.; Visweswaraiah, J.; Kapoor, V.; Reichert, J.M. Antibodies to watch in 2025. MAbs 2025, 17, 2443538. https://doi.org/10.1080/19420862.2024.2443538.
- 221.
Wang, L.; Hoseini, S.S.; Xu, H.; Ponomarev, V.; Cheung, N.-K. Silencing Fc Domains in T cell–Engaging Bispecific Antibodies Improves T-cell Trafficking and Antitumor Potency. Cancer Immunol. Res. 2019, 7, 2013–2024. https://doi.org/10.1158/2326-6066.Cir-19-0121.
- 222.
Sorkin, L.S.; Otto, M.; Baldwin, W.M., 3rd; Vail, E.; Gillies, S.D.; Handgretinger, R.; Barfield, R.C.; Yu, H.M.; Yu, A.L. Anti-GD(2) with an FC point mutation reduces complement fixation and decreases antibody-induced allodynia. Pain 2010, 149, 135–142. https://doi.org/10.1016/j.pain.2010.01.024.
- 223.
Ko, S.; Park, S.; Sohn, M.H.; Jo, M.; Ko, B.J.; Na, J.H.; Yoo, H.; Jeong, A.L.; Ha, K.; Woo, J.R.; et al. An Fc variant with two mutations confers prolonged serum half-life and enhanced effector functions on IgG antibodies. Exp. Mol. Med. 2022, 54, 1850–1861. https://doi.org/10.1038/s12276-022-00870-5.
- 224.
Lee, C.-H.; Kang, T.H.; Godon, O.; Watanabe, M.; Delidakis, G.; Gillis, C.M.; Sterlin, D.; Hardy, D.; Cogné, M.; Macdonald, L.E.; et al. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nat. Commun. 2019, 10, 5031. https://doi.org/10.1038/s41467-019-13108-2.
- 225.
Howard, J.F., Jr.; Bril, V.; Vu, T.; Karam, C.; Peric, S.; Margania, T.; Murai, H.; Bilinska, M.; Shakarishvili, R.; Smilowski, M.; et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): A multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021, 20, 526–536. https://doi.org/10.1016/s1474-4422(21)00159-9.
- 226.
The Antibody, S. Efgartigimod: A Novel FcRn Antagonist in the Treatment of Autoimmune Diseases. Available online: https://www.antibodysociety.org/antibody-engineering-therapeutics/efgartigimod-a-novel-fcrn-antagonist-in-the-treatment-of-autoimmune-diseases/ (accessed on 25 June 2024).
- 227.
Ortiz, D.F.; Lansing, J.C.; Rutitzky, L.; Kurtagic, E.; Prod’homme, T.; Choudhury, A.; Washburn, N.; Bhatnagar, N.; Beneduce, C.; Holte, K.; et al. Elucidating the interplay between IgG-Fc valency and FcγR activation for the design of immune complex inhibitors. Sci. Transl. Med. 2016, 8, 365ra158. https://doi.org/10.1126/scitranslmed.aaf9418.
- 228.
Zuercher, A.W.; Spirig, R.; Baz Morelli, A.; Rowe, T.; Käsermann, F. Next-generation Fc receptor–targeting biologics for autoimmune diseases. Autoimmun. Rev. 2019, 18, 102366. https://doi.org/10.1016/j.autrev.2019.102366.
- 229.
He, X.-h.; Li, J.-r.; Xu, J.; Shan, H.; Shen, S.-y.; Gao, S.-h.; Xu, H.E. AI-driven antibody design with generative diffusion models: Current insights and future directions. Acta Pharmacol. Sin. 2025, 46, 565–574. https://doi.org/10.1038/s41401-024-01380-y.
- 230.
Hao, X.; Liu, D.; Fan, L. YabXnization platform: A monoclonal antibody heterologization server based on rational design and artificial intelligence-assisted computation. Comput. Struct. Biotechnol. J. 2024, 23, 3222–3231. https://doi.org/10.1016/j.csbj.2024.08.013.
- 231.
Frentzas, S.; Ahern, E.S.; Weickhardt, A.J.; Haydon, A.M.; Souza, P.L.d.; Powderly, J.D.; Wyant, T.; Tang, J.; Richards, L.; Knickerbocker, A.; et al. A phase 1/2 study of AU-007, a monoclonal antibody (mAb) that binds to IL-2 and inhibits CD25 binding, in patients with advanced solid tumors: Interim results. J. Clin. Oncol. 2023, 41, e14507. https://doi.org/10.1200/JCO.2023.41.16_suppl.e14507.
- 232.
McKean, M.; Frentzas, S.; Rasco, D.; Powderly, J.; Weickhardt, A.; Hiong, A.; de Souza, P.; Blumenschein, G.; Ganju, V.; Hu-Lieskovan, S. Abstract CT178: AU-007, a human monoclonal antibody (mAb) that binds to IL-2 and inhibits CD25 binding, plus low-dose aldesleukin, in advanced solid tumors: Phase 2 update. Cancer Res. 2025, 85, CT178.
- 233.
Absci. Absci Integrated Drug Creation™ Platform Accelerates Discovery of Best-in-Class TL1A Candidate. Available online: https://www.absci.com/abs-101-case-study/ (accessed on 2 April 2025).
- 234.
AI-Created Antibodies Drive Innovation at BigHat Biosciences. Available online: www.genengnews.com/topics/artificial-intelligence/ai-created-antibodies-drive-innovation-at-bighat-biosciences/ (accessed on 2 April 2025).
- 235.
BigHat. BigHat Biosciences Completes First Stage of Research Collaboration with Amgen. 2022. Available online: https://biotechnology.report/latest-news/bighat-biosciences-completes-first-stage-of-research-collaboration-with-amgen (accessed on 2 April 2025).
- 236.
Ability, B. Ability Biotherapeutics: Logic-Gated Biotherapeutics for Cancer and Autoimmune Diseases. Available online: https://www.ability.bio/en/ (accessed on 2 April 2025).
- 237.
Müller, F.; Taubmann, J.; Bucci, L.; Wilhelm, A.; Bergmann, C.; Völkl, S.; Aigner, M.; Rothe, T.; Minopoulou, I.; Tur, C.; et al. CD19 CAR T-Cell Therapy in Autoimmune Disease—A Case Series with Follow-up. N. Engl. J. Med. 2024, 390, 687–700. https://doi.org/10.1056/NEJMoa2308917.
- 238.
Wang, X.; Wu, X.; Tan, B.; Zhu, L.; Zhang, Y.; Lin, L.; Xiao, Y.; Sun, A.; Wan, X.; Liu, S.; et al. Allogeneic CD19-targeted CAR-T therapy in patients with severe myositis and systemic sclerosis. Cell 2024, 187, 4890–4904.e4899. https://doi.org/10.1016/j.cell.2024.06.027.
- 239.
Lodka, D.; Zschummel, M.; Bunse, M.; Rousselle, A.; Sonnemann, J.; Kettritz, R.; Höpken, U.E.; Schreiber, A. CD19-targeting CAR T cells protect from ANCA-induced acute kidney injury. Ann. Rheum. Dis. 2024, 83, 499–507. https://doi.org/10.1136/ard-2023-224875.
- 240.
Doglio, M.; Ugolini, A.; Bercher-Brayer, C.; Camisa, B.; Toma, C.; Norata, R.; Del Rosso, S.; Greco, R.; Ciceri, F.; Sanvito, F.; et al. Regulatory T cells expressing CD19-targeted chimeric antigen receptor restore homeostasis in Systemic Lupus Erythematosus. Nat. Commun. 2024, 15, 2542. https://doi.org/10.1038/s41467-024-46448-9.
- 241.
Schett, G.; Müller, F.; Taubmann, J.; Mackensen, A.; Wang, W.; Furie, R.A.; Gold, R.; Haghikia, A.; Merkel, P.A.; Caricchio, R.; et al. Advancements and challenges in CAR T cell therapy in autoimmune diseases. Nat. Rev. Rheumatol. 2024, 20, 531–544. https://doi.org/10.1038/s41584-024-01139-z.
- 242.
Deckers, J.; Anbergen, T.; Hokke, A.M.; de Dreu, A.; Schrijver, D.P.; de Bruin, K.; Toner, Y.C.; Beldman, T.J.; Spangler, J.B.; de Greef, T.F.A.; et al. Engineering cytokine therapeutics. Nat. Rev. Bioeng. 2023, 1, 286–303. https://doi.org/10.1038/s44222-023-00030-y.
- 243.
Takamura, S.; Sugai, S.; Taguchi, R.; Teraki, Y. Combination therapy of apremilast and biologics in patients with psoriasis showing biologic fatigue. J. Dermatol. 2020, 47, 290–294. https://doi.org/10.1111/1346-8138.15193.
- 244.
Ozaki, K.; Leonard, W.J. Cytokine and cytokine receptor pleiotropy and redundancy. J. Biol. Chem. 2002, 277, 29355–29358. https://doi.org/10.1074/jbc.R200003200.
- 245.
Silva, D.A.; Yu, S.; Ulge, U.Y.; Spangler, J.B.; Jude, K.M.; Labão-Almeida, C.; Ali, L.R.; Quijano-Rubio, A.; Ruterbusch, M.; Leung, I.; et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 2019, 565, 186–191. https://doi.org/10.1038/s41586-018-0830-7.
- 246.
Saxton, R.A.; Glassman, C.R.; Garcia, K.C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. 2023, 22, 21–37. https://doi.org/10.1038/s41573-022-00557-6.
- 247.
Gong, Q.; Sharma, M.; Kuan, E.L.; Glass, M.C.; Chander, A.; Singh, M.; Graybuck, L.T.; Thomson, Z.J.; LaFrance, C.M.; Zaim, S.R.; et al. Longitudinal Multi-omic Immune Profiling Reveals Age-Related Immune Cell Dynamics in Healthy Adults. bioRxiv 2024. https://doi.org/10.1101/2024.09.10.612119.
- 248.
Davis, M.M.; Tato, C.M.; Furman, D. Systems immunology: Just getting started. Nat. Immunol. 2017, 18, 725–732. https://doi.org/10.1038/ni.3768.
- 249.
Vieira-Sousa, E.; Ávila-Ribeiro, P.; Fonseca, J.E. Dual anti-cytokine biologic and/or targeted synthetic therapy combination in spondyloarthritis: A narrative review. Are we missing the opportunity for higher remission rates? Front. Med. 2025, 12, 1576411. https://doi.org/10.3389/fmed.2025.1576411.
- 250.
Valero-Martínez, C.; Urgelles, J.F.; Sallés, M.; Joven-Ibáñez, B.E.; de Juanes, A.; Ramírez, J.; Juanola, X.; Almodóvar, R.; Laiz, A.; Moreno, M.; et al. Dual targeted therapy in patients with psoriatic arthritis and spondyloarthritis: A real-world multicenter experience from Spain. Front. Immunol. 2023, 14, 1283251. https://doi.org/10.3389/fimmu.2023.1283251.
- 251.
Rezai, A.R.; D’Haese, P.-F.; Finomore, V.; Carpenter, J.; Ranjan, M.; Wilhelmsen, K.; Mehta, R.I.; Wang, P.; Najib, U.; Teixeira, C.V.L.; et al. Ultrasound Blood–Brain Barrier Opening and Aducanumab in Alzheimer’s Disease. N. Engl. J. Med. 2024, 390, 55–62, https://doi.org/10.1056/NEJMoa2308719.
- 252.
Ji, X.; Sun, Y.; Xie, Y.; Gao, J.; Zhang, J. Advance in chimeric antigen receptor T therapy in autoimmune diseases. Front. Immunol. 2025, 16, 1533254. https://doi.org/10.3389/fimmu.2025.1533254.