- 1.
Morin-Crini, N.; Lichtfouse, E.; Liu, G.; et al. Worldwide Cases of Water Pollution by Emerging Contaminants: A Review. Environ. Chem. Lett. 2022, 20, 2311–2338. https://doi.org/10.1007/s10311-022-01447-4.
- 2.
Khan, S.; Naushad, M.; Govarthanan, M.; et al. Emerging Contaminants of High Concern for the Environment: Current Trends and Future Research. Environ. Res. 2022, 207, 112609. https://doi.org/10.1016/j.envres.2021.112609.
- 3.
Okoye, C.O.; Nyaruaba, R.; Ita, R.E.; et al. Antibiotic Resistance in the Aquatic Environment: Analytical Techniques and Interactive Impact of Emerging Contaminants. Environ. Toxicol. Pharmacol. 2022, 96, 103995. https://doi.org/10.1016/j.etap.2022.103995.
- 4.
Pironti, C.; Ricciardi, M.; Proto, A.; et al. Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. Water 2021, 13, 1347. https://doi.org/10.3390/w13101347.
- 5.
Bilal, M.; Alhafeiti, M.; Ashraf, S.S.; et al. Clean-Green Technologies for Removal of Emerging Contaminants from Industrial Effluents. In Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and Greener Society; Elsevier: Amsterdam, The Netherlands, 2020. https://doi.org/10.1016/B978-0-12-820318-7.00006-X.
- 6.
Kock, A.; Glanville, H.C.; Law, A.C.; et al. Emerging Challenges of the Impacts of Pharmaceuticals on Aquatic Ecosystems: A Diatom Perspective. Sci. Total Environ. 2023, 878, 162939. https://doi.org/10.1016/j.scitotenv.2023.162939.
- 7.
Rasheed, T.; Bilal, M.; Nabeel, F.; et al. Environmentally-Related Contaminants of High Concern: Potential Sources and Analytical Modalities for Detection, Quantification, and Treatment. Environ. Int. 2019, 122, 52–66. https://doi.org/10.1016/j.envint.2018.11.038.
- 8.
Crini, G.; Lichtfouse, E.; Wilson, L.D.; et al. Conventional and Non-Conventional Adsorbents for Wastewater Treatment. Environ. Chem. Lett. 2019, 17, 195–213. https://doi.org/10.1007/s10311-018-0786-8.
- 9.
Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; et al. A Review on Conventional and Novel Materials towards Heavy Metal Adsorption in Wastewater Treatment Application. J. Clean. Prod. 2021, 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589.
- 10.
Hashmi, Z.; Jatoi, A.S.; Nadeem, S.; et al. Comparative Analysis of Conventional to Biomass-Derived Adsorbent for Wastewater Treatment: A Review. Biomass Convers. Biorefinery 2024, 14, 45–76. https://doi.org/10.1007/s13399-022-02443-y.
- 11.
Pellis, A.; Guebitz, G.M.; Nyanhongo, G.S. Chitosan: Sources, Processing and Modification Techniques. Gels 2022, 8, 393. https://doi.org/10.3390/gels8070393.
- 12.
Ardean, C.; Davidescu, C.M.; Nemeş, N.S.; et al. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int. J. Mol. Sci. 2021, 22, 7449. https://doi.org/10.3390/ijms22147449.
- 13.
Bhatt, P.; Joshi, S.; Urper Bayram, G.M.; et al. Developments and Application of Chitosan-Based Adsorbents for Wastewater Treatments. Environ. Res. 2023, 226, 115530. https://doi.org/10.1016/j.envres.2023.115530.
- 14.
Upadhyay, U.; Sreedhar, I.; Singh, S.A.; et al. Recent Advances in Heavy Metal Removal by Chitosan Based Adsorbents. Carbohydr. Polym. 2021, 251, 117000. https://doi.org/10.1016/j.carbpol.2020.117000.
- 15.
Sharifi, M.J.; Nouralishahi, A.; Hallajisani, A.; et al. Magnetic Chitosan Nanocomposites as Adsorbents in Industrial Wastewater Treatment: A Brief Review. Cellul. Chem. Technol. 2021, 60, 61. https://doi.org/10.35812/CelluloseChemTechnol.2021.55.20.
- 16.
Nussinovitch, A.; Hirashima, M. Chitin and Chitosan. In More Cooking Innovations; CRC Press: Boca Raton, FL, USA, 2018; pp. 63–80. https://doi.org/10.1201/9781315111971-5.
- 17.
Harnal, S.; Sharma, G.; Malik, S.; et al. Bibliometric Mapping of Trends, Applications and Challenges of Artificial Intelligence in Smart Cities. ICST Trans. Scalable Inf. Syst. 2022, 9, e76. https://doi.org/10.4108/eetsis.vi.489.
- 18.
Muktiarni, M.; Rahayu, N.I.; Ismail, A.; et al. Bibliometric Computational Mapping Analysis of Trend Metaverse in Education Using VOSviewer. J. Adv. Res. Appl. Sci. Eng. Technol. 2023, 32, 95–106. https://doi.org/10.37934/araset.32.2.95106.
- 19.
Karakaya, Y.E.; Dikmen, M.; Şahin, A. Bibliometric Mapping of Research Trends in Education, Physical Education, and Sports for the Disabled. Life Span Disabil. 2023, 1, 53–92. https://doi.org/10.57643/lsadj.2023.26.1_03.
- 20.
da Alves, D.C.S.; Healy, B.; de Pinto, L.A.A.; et al. Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules 2021, 26, 594. https://doi.org/10.3390/molecules26030594.
- 21.
Issahaku, I.; Tetteh, I.K.; Tetteh, A.Y. Chitosan and Chitosan Derivatives: Recent Advancements in Production and Applications in Environmental Remediation. Environ. Adv. 2023, 11, 100351. https://doi.org/10.1016/j.envadv.2023.100351.
- 22.
Saheed, I.O.; Da Oh, W.; Suah, F.B.M. Chitosan Modifications for Adsorption of Pollutants–A Review. J. Hazard. Mater. 2021, 408, 124889. https://doi.org/10.1016/j.jhazmat.2020.124889.
- 23.
Aranaz, I.; Alcántara, A.R.; Civera, M.C.; et al. Chitosan: An Overview of Its Properties and Applications. Polymers 2021, 13, 3256. https://doi.org/10.3390/polym13193256.
- 24.
Wang, W.; Meng, Q.; Li, Q.; et al. Chitosan Derivatives and Their Application in Biomedicine. Int. J. Mol. Sci. 2020, 21, 487. https://doi.org/10.3390/ijms21020487.
- 25.
Arroub, H.; Hsissou, R.; Elharfi, A. Investigation of Modified Chitosan as Potential Polyelectrolyte Polymer and Eco-Friendly for the Treatment of Galvanization Wastewater Using Novel Hybrid Process. Results Chem. 2020, 2, 100047. https://doi.org/10.1016/j.rechem.2020.100047.
- 26.
El-Newehy, M.H.; Aldalbahi, A.; Thamer, B.M.; et al. Green and Eco-Friendly Scalable Synthesis of Chitosan-Carbon Nanocomposite for Efficient Dye Removal. Diam. Relat. Mater. 2024, 148, 111461. https://doi.org/10.1016/j.diamond.2024.111461.
- 27.
Jadoon, W.A.; Ullah, F.; Zaheer, M.; et al. Efficient Removal of Methylene Yellow Dye by Activated Carbon-Chitosan Composite Beads. J. Sustain. Environ. 2023, 2, 1–9. https://doi.org/10.58921/jse.02.02.050.
- 28.
Jung, S.; Jung, M.; Yoon, J.; et al. Chitosan-Derived Activated Carbon/Chitosan Composite Beads for Adsorptive Removal of Methylene Blue and Acid Orange 7 Dyes. React. Funct. Polym. 2024, 204, 106028. https://doi.org/10.1016/j.reactfunctpolym.2024.106028.
- 29.
He, X.; Nkoh, J.N.; Shi, R.; et al. Application of Chitosan- and Alginate-Modified Biochars in Promoting the Resistance to Paddy Soil Acidification and Immobilization of Soil Cadmium. Environ. Pollut. 2022, 313, 120175. https://doi.org/10.1016/j.envpol.2022.120175.
- 30.
Mahgoub, S.M.; Essam, D.; Eldin, Z.E.; et al. Carbon Supported Ternary Layered Double Hydroxide Nanocomposite for Fluoxetine Removal and Subsequent Utilization of Spent Adsorbent as Antidepressant. Sci. Rep. 2024, 14, 3990. https://doi.org/10.1038/s41598-024-53781-y.
- 31.
Streit, A.F.M.; Collazzo, G.C.; Druzian, S.P.; et al. Adsorption of Ibuprofen, Ketoprofen, and Paracetamol onto Activated Carbon Prepared from Effluent Treatment Plant Sludge of the Beverage Industry. Chemosphere 2021, 262, 128322. https://doi.org/10.1016/j.chemosphere.2020.128322.
- 32.
Lin, W.; Guo, H.; Yang, L.; et al. Alleviation of Microcystin-LR-Induced Hepatic Lipidosis and Apoptosis in Zebrafish by Use of Rice Straw-Derived Biochar. Ecotoxicol. Environ. Saf. 2022, 229, 113054. https://doi.org/10.1016/j.ecoenv.2021.113054.
- 33.
Rathi, B.S.; Kumar, P.S. Application of Adsorption Process for Effective Removal of Emerging Contaminants from Water and Wastewater. Environ. Pollut. 2021, 280, 116995. https://doi.org/10.1016/j.envpol.2021.116995.
- 34.
Huang, Z.; Qian, K.; Chen, J.; et al. A Biomimetic Zeolite-Based Nanoenzyme Contributes to Neuroprotection in the Neurovascular Unit after Ischaemic Stroke via Efficient Removal of Zinc and ROS. Acta Biomater. 2022, 144, 142–156. https://doi.org/10.1016/j.actbio.2022.03.018.
- 35.
Liang, X.; Li, Y.; Tang, S.; et al. Mechanism Underlying How a Chitosan-Based Phosphorus Adsorbent Alleviates Cadmium-Induced Oxidative Stress in Bidens Pilosa L. and Its Impact on Soil Microbial Communities: A Field Study. Chemosphere 2022, 295, 133943. https://doi.org/10.1016/j.chemosphere.2022.133943.
- 36.
Stachowiak, M.; Cegłowski, M.; Kurczewska, J. Hybrid Chitosan/Molecularly Imprinted Polymer Hydrogel Beads Doped with Iron for Selective Ibuprofen Adsorption. Int. J. Biol. Macromol. 2023, 251, 126356. https://doi.org/10.1016/j.ijbiomac.2023.126356.
- 37.
Liu, S.H.; Tang, W.T.; Yang, Y.H. Adsorption of Nicotine in Aqueous Solution by a Defective Graphene Oxide. Sci. Total Environ. 2018, 643, 507–515. https://doi.org/10.1016/j.scitotenv.2018.06.205.
- 38.
da Rocha Medeiros, G.; da Silva Pereira Júnior, A.; Fontes Galvão, F.M.; et al. Optimization of Diclofenac Sodium Adsorption onto Graphene Nanosheets: Capacity, Kinetics, Isotherms and Removal. Desalin. Water Treat. 2022, 271, 176–191. https://doi.org/10.5004/dwt.2022.28789.
- 39.
Niv, D.; Anavi, E.; Yaval, L.; et al. Sepiolite–Chitosan–Acetic Acid Biocomposite Attenuates the Development of Obesity and Nonalcoholic Fatty Liver Disease in Mice Fed a High-Fat Diet. Nutrients 2024, 16, 3958. https://doi.org/10.3390/nu16223958.
- 40.
Humelnicu, D.; Ignat, M.; Suchea, M. Evaluation of Adsorption Capacity of Montmorillonite and Aluminium-Pillared Clay for Pb2+, Cu2+ and Zn2+. Acta Chim. Slov. 2015, 62, 947–957. https://doi.org/10.17344/acsi.2015.1825.
- 41.
Abdullah, N.H.; Borhan, A.; Saadon, S.Z.A.H. Biosorption of Wastewater Pollutants by Chitosan-Based Porous Carbons: A Sustainable Approach for Advanced Wastewater Treatment. Bioresour. Technol. Reports 2024, 25, 101705. https://doi.org/10.1016/j.biteb.2023.101705.
- 42.
Ahmed, M.J.; Hameed, B.H.; Hummadi, E.H. Review on Recent Progress in Chitosan/Chitin-Carbonaceous Material Composites for the Adsorption of Water Pollutants. Carbohydr. Polym. 2020, 247, 116690. https://doi.org/10.1016/j.carbpol.2020.116690.
- 43.
Xu, R. Activated Carbons and Chitosan Adsorbents in Removing Contaminants from Water. E3S Web Conf. 2024, 553, 03009. https://doi.org/10.1051/e3sconf/202455303009.
- 44.
Wang, J.; Zhuang, S. Removal of Various Pollutants from Water and Wastewater by Modified Chitosan Adsorbents. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2331–2386. https://doi.org/10.1080/10643389.2017.1421845.
- 45.
Jadhav, M.V.; Mahajan, Y.S. Advancement of Chitosan-Based Adsorbents for Enhanced and Selective Adsorption Performance in Water/Wastewater Treatment: Review. World Rev. Sci. Technol. Sustain. Dev. 2011, 8, 276. https://doi.org/10.1504/WRSTSD.2011.044223.
- 46.
Omer, A.M.; Dey, R.; Eltaweil, A.S.; et al. Insights into Recent Advances of Chitosan-Based Adsorbents for Sustainable Removal of Heavy Metals and Anions. Arab. J. Chem. 2022, 15, 103543. https://doi.org/10.1016/j.arabjc.2021.103543.
- 47.
Keshvardoostchokami, M.; Majidi, M.; Zamani, A.; et al. A Review on the Use of Chitosan and Chitosan Derivatives as the Bio-Adsorbents for the Water Treatment: Removal of Nitrogen-Containing Pollutants. Carbohydr. Polym. 2021, 273, 118625. https://doi.org/10.1016/j.carbpol.2021.118625.
- 48.
Ko, M.; Jang, T.; Yoon, S.; et al. Synthesis of Recyclable and Light-Weight Graphene Oxide/Chitosan/Genipin Sponges for the Adsorption of Diclofenac, Triclosan, and Microplastics. Chemosphere 2024, 356, 141956. https://doi.org/10.1016/j.chemosphere.2024.141956.
- 49.
Mohseni, M.; Dilokekunakul, W.; Zängler, W.; et al. PFAS-Free Carbon Electrodes for Efficient Micropollutants Removal through Heterogeneous Electro-Fenton: From Material Synthesis to Module Design. ECS Meet. Abstr. 2023, 54, 2569. https://doi.org/10.1149/ma2023-02542569mtgabs.
- 50.
Rukhsar, A.; Iqbal, Z.F.; Khan, M.S.; et al. Chitosan-Based Adsorbents and Catalysts for Removal of Toxic Pollutants from Water and Wastewater. Top. Catal. 2025, 68, 893–915. https://doi.org/10.1007/s11244-024-01979-9.
- 51.
Yadav, M.; Kaushik, B.; Rao, G.K.; et al. Advances and Challenges in the Use of Chitosan and Its Derivatives in Biomedical Fields: A Review. Carbohydr. Polym. Technol. Appl. 2023, 5, 100323. https://doi.org/10.1016/j.carpta.2023.100323.
- 52.
Salzano de Luna, M.; Ascione, C.; Santillo, C.; et al. Optimization of Dye Adsorption Capacity and Mechanical Strength of Chitosan Aerogels through Crosslinking Strategy and Graphene Oxide Addition. Carbohydr. Polym. 2019, 211, 195–203. https://doi.org/10.1016/j.carbpol.2019.02.002.
- 53.
Sun, Y.; Liu, Y. Adsorption of Pb(II) and Cu(II) Ions by Cross-Linked Chitosan Beads. Hsi-An Chiao Tung Ta Hsueh/J. Xi’an Jiaotong Univ. 2013, 47, 127–132. https://doi.org/10.7652/xjtuxb201311022.
- 54.
Kildeeva, N.R.; Perminov, P.A.; Vladimirov, L.V.; et al. About Mechanism of Chitosan Cross-Linking with Glutaraldehyde. Russ. J. Bioorg. Chem. 2009, 35, 360–369. https://doi.org/10.1134/S106816200903011X.
- 55.
Nishad, P.A.; Bhaskarapillai, A.; Velmurugan, S. Enhancing the Antimony Sorption Properties of Nano Titania-Chitosan Beads Using Epichlorohydrin as the Crosslinker. J. Hazard. Mater. 2017, 334, 160–167. https://doi.org/10.1016/j.jhazmat.2017.04.009.
- 56.
Sethy, T.R.; Sahoo, P.K. Highly Toxic Cr (VI) Adsorption by (Chitosan-g-PMMA)/Silica Bionanocomposite Prepared via Emulsifier-Free Emulsion Polymerisation. Int. J. Biol. Macromol. 2019, 122, 1184–1190. https://doi.org/10.1016/j.ijbiomac.2018.09.069.
- 57.
Bouammali, H.; Bourassi, L.; Bouammali, B.; et al. Graphene and Chitosan Innovative Materials for Water Treatment: Review. Mater. Today Proc. 2023, 72, 3577–3588. https://doi.org/10.1016/j.matpr.2022.08.349.
- 58.
Rostami, M.S.; Khodaei, M.M. Recent Advances in Chitosan-Based Nanocomposites for Adsorption and Removal of Heavy Metal Ions. Int. J. Biol. Macromol. 2024, 270, 132386. https://doi.org/10.1016/j.ijbiomac.2024.132386.
- 59.
Mittal, H.; Al Alili, A.; Morajkar, P.P.; et al. GO Crosslinked Hydrogel Nanocomposites of Chitosan/Carboxymethyl Cellulose–A Versatile Adsorbent for the Treatment of Dyes Contaminated Wastewater. Int. J. Biol. Macromol. 2021, 167, 1248–1261. https://doi.org/10.1016/j.ijbiomac.2020.11.079.
- 60.
Hsu, C.Y.; Ajaj, Y.; Mahmoud, Z.H.; et al. Adsorption of Heavy Metal Ions Use Chitosan/Graphene Nanocomposites: A Review Study. Results Chem. 2024, 7, 101332. https://doi.org/10.1016/j.rechem.2024.101332.
- 61.
Ren, X.; Fan, Z.; Jin, L.; et al. Unleashing the Potential of Water-Insoluble Cu2+-Crosslinked Chitosan Nanocomposite Film for Enhanced Antibacterial and Flame-Retardant Properties. Int. J. Biol. Macromol. 2024, 283, 137455. https://doi.org/10.1016/j.ijbiomac.2024.137455.
- 62.
Pindihama, G.K.; Gitari, M.W.; Mudzielwana, R.; et al. Development of a Chitosan-Multi-Walled Carbon Nanotubes Composite for Application in Solid-Phase Adsorption Toxin Tracking of Microcystins. S. Afr. J. Sci. 2023, 119, 14786. https://doi.org/10.17159/SAJS.2023/14786.
- 63.
Kolya, H.; Kang, C.W. Next-Generation Water Treatment: Exploring the Potential of Biopolymer-Based Nanocomposites in Adsorption and Membrane Filtration. Polymers 2023, 15, 3421. https://doi.org/10.3390/polym15163421.
- 64.
Li, Y.; Liu, H.; Nie, R.; et al. Highly Efficient Adsorption of Anionic Dyes on a Porous Graphene Oxide Nanosheets/Chitosan Composite Aerogel. Ind. Crops Prod. 2024, 220, 119146. https://doi.org/10.1016/j.indcrop.2024.119146.
- 65.
Mattei-Sosa, J.; Medina, V.; Griggs, C.; et al. Crosslinking Graphene Oxide and Chitosan to Form Scalable Water Treatment Membranes; Mississippi State University: Starkville, MS, USA, 2019. https://doi.org/10.21079/11681/33263.
- 66.
Vo, L.Q.; Vu, A.-T.; Le, T.D.; et al. Fe3O4/Graphene Oxide/Chitosan Nanocomposite: A Smart Nanosorbent for Lead(II) Ion Removal from Contaminated Water. ACS Omega 2024, 9, 17506–17517. https://doi.org/10.1021/acsomega.4c00486.
- 67.
Masoudinia, M.; Arabkhani, P.; Sadegh, F.; et al. Synthesis and Characterization of the Magnetic Chitosan/Zinc Oxide Nanocomposite: An Efficient Magnetic Adsorbent for Removal of Harmful Aromatic Micropollutants from Wastewater. J. Mol. Struct. 2024, 1303, 137603. https://doi.org/10.1016/j.molstruc.2024.137603.
- 68.
Gao, J.; Song, M.; Li, T.; et al. Water-Soluble Carboxymethyl Chitosan (WSCC)-Modified Single-Walled Carbon Nanotubes (SWCNTs) Provide Efficient Adsorption of Pb(II) from Water. RSC Adv. 2022, 12, 6821–6830. https://doi.org/10.1039/d2ra00066k.
- 69.
Spoială, A.; Ilie, C.I.; Dolete, G.; et al. Preparation and Characterization of Chitosan/TiO2 Composite Membranes as Adsorbent Materials for Water Purification. Membranes 2022, 12, 804. https://doi.org/10.3390/membranes12080804.
- 70.
Chen, J.; Liu, F.; Abdiryim, T.; et al. ZnO-Ti3C2TX Composites Supported on Polyacrylic Acid/Chitosan Hydrogels as High-Efficiency and Recyclable Photocatalysts for Norfloxacin Degradation. Int. J. Biol. Macromol. 2024, 258, 128912. https://doi.org/10.1016/j.ijbiomac.2023.128912.
- 71.
Sirajudheen, P.; Vigneshwaran, S.; Selvaraj, M.; et al. Tuning the Charge Transfer Efficiency of Chitosan/Biomass/TiO2 Composite by Sequential Sulphur Stacking for the Sequestration of Cr(VI) and Organic Dye. J. Environ. Chem. Eng. 2025, 13, 114948. https://doi.org/10.1016/j.jece.2024.114948.
- 72.
Habiba, U.; Islam, M.S.; Siddique, T.A.; et al. Adsorption and Photocatalytic Degradation of Anionic Dyes on Chitosan/PVA/Na-Titanate/TiO2 Composites Synthesized by Solution Casting Method. Carbohydr. Polym. 2016, 149, 317–331. https://doi.org/10.1016/j.carbpol.2016.04.127.
- 73.
Gao, X.; Yin, H.; Guo, C.; et al. Comprehensive Removal of Various Dyes by Thiourea Modified Chitosan/Nano ZnS Composite via Enhanced Photocatalysis: Performance and Mechanism. Int. J. Biol. Macromol. 2023, 247, 125677. https://doi.org/10.1016/j.ijbiomac.2023.125677.
- 74.
Alyasi, H.; Wahib, S.; Tong, Y.; et al. Magnetic MXene Chitosan-Lignosulfonate Composite (Fe3O4@ MCLS) for the Reductive Removal of Cr(VI) and Other Heavy Metals from Water. J. Hazard. Mater. Adv. 2025, 17, 100536. https://doi.org/10.1016/j.hazadv.2024.100536.
- 75.
Lin, J.; Gao, D.; Zeng, J.; et al. MXene/ZnS/Chitosan-Cellulose Composite with Schottky Heterostructure for Efficient Removal of Anionic Dyes by Synergistic Effect of Adsorption and Photocatalytic Degradation. Int. J. Biol. Macromol. 2024, 269, 131994. https://doi.org/10.1016/j.ijbiomac.2024.131994.
- 76.
Hussain, S. Recent Trends in Chitosan-Based Hydrogels for Water Treatment Applications. A Bibliometric Analysis. Int. J. Environ. Anal. Chem. 2024, 1–23. https://doi.org/10.1080/03067319.2024.2423844.
- 77.
Lam, W.S.; Lam, W.H.; Lee, P.F. The Studies on Chitosan for Sustainable Development: A Bibliometric Analysis. Materials 2023, 16, 2857. https://doi.org/10.3390/ma16072857.
- 78.
Ahmad, K.; Chiari, W. Metal Oxide/Chitosan Composite for Organic Pollutants Removal: A Comprehensive Review with Bibliometric Analysis. Narra X 2023, 1. https://doi.org/10.52225/narrax.v1i2.91.
- 79.
Ola, A.T.T.; Heryanto, H.; Armynah, B.; et al. Bibliometric Analysis of Chitosan Research for Wastewater Treatment: A Review. Environ. Monit. Assess. 2023, 195, 474. https://doi.org/10.1007/s10661-023-11094-z.
- 80.
Yuan, Y.; Xiao, S.; Yan, B.; et al. Bibliometric Based Analysis of Hydrogels in the Field of Water Treatment. Sustainability 2024, 16, 8194. https://doi.org/10.3390/su16188194.
- 81.
Verbeek, A.; Debackere, K.; Luwel, M.; et al. Measuring Progress and Evolution in Science and Technology-I: The Multiple Uses of Bibliometric Indicators. Int. J. Manag. Rev. 2002, 4, 179–211. https://doi.org/10.1111/1468-2370.00083.
- 82.
Assyakur, D.S.; Rosa, E.M. Spiritual Leadership in Healthcare: A Bibliometric Analysis. J. Aisyah J. Ilmu Kesehat. 2022, 7, 355–362. https://doi.org/10.30604/jika.v7i2.914.
- 83.
Alves, J.L.; Borges, I.B.; De Nadae, J. Sustainability in Complex Projects of Civil Construction: Bibliometric and Bibliographic Review. Gest. Prod. 2021, 28, e5389. https://doi.org/10.1590/1806-9649-2020v28e5389.
- 84.
Fahimnia, B.; Sarkis, J.; Davarzani, H. Green Supply Chain Management: A Review and Bibliometric Analysis. Int. J. Prod. Econ. 2015, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003.
- 85.
di Stefano, G.; Peteraf, M.; Veronay, G. Dynamic Capabilities Deconstructed: A Bibliographic Investigation into the Origins, Development, and Future Directions of the Research Domain. Ind. Corp. Chang. 2010, 19, 1187–1204. https://doi.org/10.1093/icc/dtq027.
- 86.
Khiste, G.P.; Paithankar, R.R. Analysis of Bibliometric Term in Scopus. Int. Res. J. 2017, 01, 78–83.
- 87.
Al-Khoury, A.; Hussein, S.A.; Abdulwhab, M.; et al. Intellectual Capital History and Trends: A Bibliometric Analysis Using Scopus Database. Sustainability 2022, 14, 11615. https://doi.org/10.3390/su141811615.
- 88.
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. https://doi.org/10.1136/bmj.n71.
- 89.
van Eck, N.J.; Waltman, L. Citation-Based Clustering of Publications Using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. https://doi.org/10.1007/s11192-017-2300-7.
- 90.
van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. https://doi.org/10.1007/s11192-009-0146-3.
- 91.
Appio, F.P.; Martini, A.; Massa, S.; et al. Unveiling the Intellectual Origins of Social Media-Based Innovation: Insights from a Bibliometric Approach. Scientometrics 2016, 108, 355–388. https://doi.org/10.1007/s11192-016-1955-9.
- 92.
Liu, Z.; Yin, Y.; Liu, W.; et al. Visualizing the Intellectual Structure and Evolution of Innovation Systems Research: A Bibliometric Analysis. Scientometrics 2015, 103, 135–158. https://doi.org/10.1007/s11192-014-1517-y.
- 93.
Tanhaei, B.; Ayati, A.; Lahtinen, M.; et al. Preparation and Characterization of a Novel Chitosan/Al2O3/Magnetite Nanoparticles Composite Adsorbent for Kinetic, Thermodynamic and Isotherm Studies of Methyl Orange Adsorption. Chem. Eng. J. 2015, 259, 1–10. https://doi.org/10.1016/j.cej.2014.07.109.
- 94.
Jamshidifard, S.; Koushkbaghi, S.; Hosseini, S.; et al. Incorporation of UiO-66-NH2 MOF into the PAN/Chitosan Nanofibers for Adsorption and Membrane Filtration of Pb(II), Cd(II) and Cr(VI) Ions from Aqueous Solutions. J. Hazard. Mater. 2019, 368, 10–20. https://doi.org/10.1016/j.jhazmat.2019.01.024.
- 95.
Habiba, U.; Afifi, A.M.; Salleh, A.; et al. Chitosan/(Polyvinyl Alcohol)/Zeolite Electrospun Composite Nanofibrous Membrane for Adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 2017, 322, 182–194. https://doi.org/10.1016/j.jhazmat.2016.06.028.
- 96.
Zhao, R.; Ma, T.; Zhao, S.; et al. Uniform and Stable Immobilization of Metal-Organic Frameworks into Chitosan Matrix for Enhanced Tetracycline Removal from Water. Chem. Eng. J. 2020, 382, 122893. https://doi.org/10.1016/j.cej.2019.122893.
- 97.
Li, D.; Tian, X.; Wang, Z.; et al. Multifunctional Adsorbent Based on Metal-Organic Framework Modified Bacterial Cellulose/Chitosan Composite Aerogel for High Efficient Removal of Heavy Metal Ion and Organic Pollutant. Chem. Eng. J. 2020, 383, 123127. https://doi.org/10.1016/j.cej.2019.123127.
- 98.
Chen, B.; Zhao, H.; Chen, S.; et al. A Magnetically Recyclable Chitosan Composite Adsorbent Functionalized with EDTA for Simultaneous Capture of Anionic Dye and Heavy Metals in Complex Wastewater. Chem. Eng. J. 2019, 356, 69–80. https://doi.org/10.1016/j.cej.2018.08.222.
- 99.
Karthik, R.; Meenakshi, S. Removal of Pb(II) and Cd(II) Ions from Aqueous Solution Using Polyaniline Grafted Chitosan. Chem. Eng. J. 2015, 263, 168–177. https://doi.org/10.1016/j.cej.2014.11.015.
- 100.
Afzal, M.Z.; Sun, X.F.; Liu, J.; et al. Enhancement of Ciprofloxacin Sorption on Chitosan/Biochar Hydrogel Beads. Sci. Total Environ. 2018, 639, 560–569. https://doi.org/10.1016/j.scitotenv.2018.05.129.
- 101.
Kyzas, G.Z.; Siafaka, P.I.; Pavlidou, E.G.; et al. Synthesis and Adsorption Application of Succinyl-Grafted Chitosan for the Simultaneous Removal of Zinc and Cationic Dye from Binary Hazardous Mixtures. Chem. Eng. J. 2015, 259, 438–448. https://doi.org/10.1016/j.cej.2014.08.019.
- 102.
Jayasantha Kumari, H.; Krishnamoorthy, P.; Arumugam, T.K.; et al. An Efficient Removal of Crystal Violet Dye from Waste Water by Adsorption onto TLAC/Chitosan Composite: A Novel Low Cost Adsorbent. Int. J. Biol. Macromol. 2017, 96, 324–333. https://doi.org/10.1016/j.ijbiomac.2016.11.077.