- 1.
Poggiogalle, E.; Jamshed, H.; Peterson, C.M. Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism 2018, 84, 11–27. https://doi.org/10.1016/j.metabol.2017.11.017.
- 2.
Sajadimajd, S.; Bahrami, G.; Mohammadi, B.; Nouri, Z.; Farzaei, M.H.; Chen, J.T. Protective effect of the isolated oligosaccharide from Rosa canina in STZ-treated cells through modulation of the autophagy pathway. J. Food Biochem. 2020, 44, e13404. https://doi.org/10.1111/jfbc.13404.
- 3.
Han, H.S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016, 48, e218. https://doi.org/10.1038/emm.2015.122.
- 4.
Hernandez, F. Glycolysis and gluconeogenesis: A teaching view. J. Biol. Chem. 2021, 296, 100016. https://doi.org/10.1016/j.jbc.2020.100016.
- 5.
Huang, F.; Wang, B.R.; Wang, Y.G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J. Gastroenterol. 2018, 24, 4643–4651. https://doi.org/10.3748/wjg.v24.i41.4643.
- 6.
Levine, B.; Klionsky, D.J. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev. Cell 2004, 6, 463–477. https://doi.org/10.1016/s1534-5807(04)00099-1.
- 7.
McCarthy, M. Japanese cellular biologist wins Nobel prize for study of autophagy. BMJ 2016, 355, i5374. https://doi.org/10.1136/bmj.i5374.
- 8.
Levine, B.; Klionsky, D. Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: Breakthroughs in baker’s yeast fuel advances in biomedical research. Proc. Natl. Acad. Sci. USA 2017, 114, 201–205. https://doi.org/10.1073/pnas.1619876114.
- 9.
Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell 2011, 147, 728–741. https://doi.org/10.1016/j.cell.2011.10.026.
- 10.
Hurley, J.H.; Young, L.N. Mechanisms of Autophagy Initiation. Annu. Rev. Biochem. 2017, 86, 225–244. https://doi.org/10.1146/annurev-biochem-061516-044820.
- 11.
Chu, C.T. Mechanisms of selective autophagy and mitophagy: Implications for neurodegenerative diseases. Neurobiol. Dis. 2019, 122, 23–34. https://doi.org/10.1016/j.nbd.2018.07.015.
- 12.
Luo, Z.; Xu, X.; Sho, T.; Zhang, J.; Xu, W.; Yao, J.; Xu, J. ROS-induced autophagy regulates porcine trophectoderm cell apoptosis, proliferation, and differentiation. Am. J. Physiol. Cell Physiol. 2019, 316, C198–c209. https://doi.org/10.1152/ajpcell.00256.2018.
- 13.
Qi, Z.; Chen, L. Endoplasmic Reticulum Stress and Autophagy. Adv. Exp. Med. Biol. 2019, 362, 11. https://doi.org/10.1007/978-981-15-0602-4_8.
- 14.
Liu, M.; Li, H.; Zhou, Q.; Zhao, H.; Lv, D.; Cao, J.; Jiang, J.; Tang, M.; Wu, D.; Liu, J.; et al. ROS-Autophagy pathway mediates monocytes-human umbilical vein endothelial cells adhesion induced by apelin-13. J. Cell. Physiol. 2018, 233, 6839–6850. https://doi.org/10.1002/jcp.26554.
- 15.
Xie, F.; Liu, W.; Feng, F.; Li, X.; He, L.; Lv, D.; Qin, X.; Li, L.; Li, L.; Chen, L. Apelin-13 promotes cardiomyocyte hypertrophy via PI3K-Akt-ERK1/2-p70S6K and PI3K-induced autophagy. Acta Biochim. Biophys. Sin. 2015, 47, 969–980. https://doi.org/10.1093/abbs/gmv111.
- 16.
Zhe, C.; Jun, C.; Qun, Z.; Le-le, W.; Jia-Wei, C.; Xiang-Ning, D.; Jia-Long, Y.; Jian-Gang, C.; Xiao-Dan, X.; Lan-Fang, L.; et al. SEC62-dependent ER-phagy contributes to apelin-13/APJ-induced monocyte-vascular endothelial cell adhesion in atherosclerosis pathogenesis. Acta Pharmacol. Sin. 2025, 46, 1652–1663. https://doi.org/10.1038/s41401-024-01471-w.
- 17.
Boya, P.; Codogno, P.; Rodriguez-Muela, N. Autophagy in stem cells: Repair, remodelling and metabolic reprogramming. Development 2018, 145, dev146506. https://doi.org/10.1242/dev.146506.
- 18.
Butler, D.E.; Marlein, C.; Walker, H.F.; Frame, F.M.; Mann, V.M.; Simms, M.S.; Davies, B.R.; Collins, A.T.; Maitland, N.J. Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget 2017, 8, 56698–56713. https://doi.org/10.18632/oncotarget.18082.
- 19.
Qian, H.; Chao, X.; Williams, J.; Fulte, S.; Li, T.; Yang, L.; Ding, W.X. Autophagy in liver diseases: A review. Mol. Asp. Med. 2021, 82, 100973. https://doi.org/10.1016/j.mam.2021.100973.
- 20.
Mikhail, R.; Anna, E.; Deborah, S.; Wenfang, X.; Eitan, O.; Samuel, B.; Petra, E.G.; Reid, R.T.; William, S.L.; Tamas, D.; et al. Diurnal Rhythms Spatially and Temporally Organize Autophagy. Cell Rep. 2019, 26, 1880-1892. https://doi.org/10.1016/j.celrep.2019.01.072.
- 21.
Martinez-Lopez, N.; Singh, R. Autophagy and Lipid Droplets in the Liver. Annu. Rev. Nutr. 2015, 35, 215–237. https://doi.org/10.1146/annurev-nutr-071813-105336.
- 22.
Filali-Mouncef, Y.; Hunter, C.; Roccio, F.; Zagkou, S.; Dupont, N.; Primard, C.; Proikas-Cezanne, T.; Reggiori, F. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy 2022, 18, 50–72. https://doi.org/10.1080/15548627.2021.1895658.
- 23.
Kalamidas, S.; Kotoulas, O.; Kotoulas, A.; Maintas, D. The breakdown of glycogen in the lysosomes of newborn rat hepatocytes: The effects of glucose, cyclic 3′,5′-AMP and caffeine. Histol. Histopathol. 1994, 9, 691–698.
- 24.
Kotoulas, O.B.; Ho, J.; Adachi, F.; Weigensberg, B.I.; Phillips, M.J. Fine structural aspects of the mobilization of hepatic glycogen. II. Inhibition of glycogen breakdown. Am. J. Pathol. 1971, 63, 23–36.
- 25.
Kotoulas, O.B.; Phillips, M.J. Fine structural aspects of the mobilization of hepatic glycogen. I. Acceleration of glycogen breakdown. Am. J. Pathol. 1971, 63, 1–22.
- 26.
Roach, P.J.; Depaoli-Roach, A.A.; Hurley, T.D.; Tagliabracci, V.S. Glycogen and its metabolism: Some new developments and old themes. Biochem. J. 2012, 441, 763–787. https://doi.org/10.1042/bj20111416.
- 27.
Kalamidas, S.A.; Kotoulas, O.B. Studies on the breakdown of glycogen in the lysosomes: The effects of hydrocortisone. Histol. Histopathol. 2000, 15, 29–35. https://doi.org/10.14670/hh-15.29.
- 28.
Kalamidas, S.A.; Kotoulas, O.B. The degradation of glycogen in the lysosomes of newborn rat hepatocytes: Glycogen-, maltose- and isomaltose-hydrolyzing acid alpha glucosidase activities in liver. Histol. Histopathol. 1999, 14, 23–30. https://doi.org/10.14670/hh-14.23.
- 29.
Iwamasa, T.; Tsuru, T.; Hamada, T.; Takeuchi, T. Physicochemical and ultrastructural studies on glycogenosomes in newborn rat hepatocytes. Pathol. Res. Pract. 1980, 167, 363–373. https://doi.org/10.1016/s0344-0338(80)80065-3.
- 30.
Zhao, H.; Tang, M.; Liu, M.; Chen, L. Glycophagy: An emerging target in pathology. Clin. Chim. Acta 2018, 484, 298–303. https://doi.org/10.1016/j.cca.2018.06.014.
- 31.
Dong, J.; Guo, C.; Yang, Z.; Wu, Y.; Zhang, C. Follicle-Stimulating Hormone Alleviates Ovarian Aging by Modulating Mitophagy- and Glycophagy-Based Energy Metabolism in Hens. Cells 2022, 11, 3270. https://doi.org/10.3390/cells11203270.
- 32.
Qiu, F.; Yuan, Y.; Luo, W.; Gong, Y.; Zhang, Z.; Liu, Z.M.; Gao, L. Asiatic acid alleviates ischemic myocardial injury in mice by modulating mitophagy- and glycophagy-based energy metabolism. Acta Pharmacol. Sin. 2021, 43, 1395–1407. https://doi.org/10.1038/s41401-021-00763-9.
- 33.
Kalamidas, S.A.; Kotoulas, O.B. Glycogen autophagy in newborn rat hepatocytes. Histol. Histopathol. 2000, 15, 1011–1018. https://doi.org/10.14670/hh-15.1011.
- 34.
David, H.; Reinke, P.; Bimmler, M. Postnatal development of hepatocytes following oxygen deficiency in utero. Exp. Pathol. 1986, 30, 247–256. https://doi.org/10.1016/s0232-1513(86)80084-6.
- 35.
Devos, P.; Hers, H. Random, presumably hydrolytic, and lysosomal glycogenolysis in the livers of rats treated with phlorizin and of newborn rats. Biochem. J. 1980, 192, 177–181. https://doi.org/10.1042/bj1920177.
- 36.
Kovács, A.L.; Eldib, A.; Telbisz, A. Autophagy in hepatocytes and erythropoietic cells isolated from the twenty-one day old rat embryo. Acta Biol. Hung. 2001, 52, 417–433. https://doi.org/10.1556/ABiol.52.2001.4.7.
- 37.
Ohshita, T. Suppression of autophagy by ethionine administration in male rat liver in vivo. Toxicology 2000, 147, 51–57. https://doi.org/10.1016/s0300-483x(00)00180-3.
- 38.
Lin, Q.; Shi, Y.; Liu, Z.; Mehrpour, M.; Hamaï, A.; Gong, C. Non-coding RNAs as new autophagy regulators in cancer progression. Biochim. Biophys. Acta. Mol. Basis Dis. 2022, 1868, 166293. https://doi.org/10.1016/j.bbadis.2021.166293.
- 39.
Deng, Y.Z.; Ramos-Pamplona, M.; Naqvi, N.I. Autophagy-assisted glycogen catabolism regulates asexual differentiation in Magnaporthe oryzae. Autophagy 2009, 5, 33–43. https://doi.org/10.4161/auto.5.1.7175.
- 40.
Yang, C.; Wang, H.; Shao, M.; Chu, F.; He, Y.; Chen, X.; Fan, J.; Chen, J.; Cai, Q.; Wu, C. Brain-Type Glycogen Phosphorylase (PYGB) in the Pathologies of Diseases: A Systematic Review. Cells 2024, 13, 289. https://doi.org/10.3390/cells13030289.
- 41.
Franco-Romero, A.; Sandri, M.; Schiaffino, S. Autophagy in Skeletal Muscle. Cold Spring Harb. Perspect. Biol. 2024, a041565. https://doi.org/10.1101/cshperspect.a041565.
- 42.
Müller, M.S.; Pedersen, S.E.; Walls, A.B.; Waagepetersen, H.S.; Bak, L.K. Isoform-selective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes. Glia 2015, 63, 154–162. https://doi.org/10.1002/glia.22741.
- 43.
Zois, C.E.; Hendriks, A.M.; Haider, S.; Pires, E.; Bridges, E.; Kalamida, D.; Voukantsis, D.; Lagerholm, B.C.; Fehrmann, R.S.N.; den Dunnen, W.F.A.; et al. Liver glycogen phosphorylase is upregulated in glioblastoma and provides a metabolic vulnerability to high dose radiation. Cell Death Dis. 2022, 13, 573. https://doi.org/10.1038/s41419-022-05005-2.
- 44.
Chen, H.; Zhao, F.; Chen, K.; Guo, Y.; Liang, Y.; Zhao, H.; Chen, S. Exposure of zebrafish to a cold environment triggered cellular autophagy in zebrafish liver. J. Fish. Dis. 2022, 45, 991–1000. https://doi.org/10.1111/jfd.13620.
- 45.
Schulz, A.; Sekine, Y.; Oyeyemi, M.J.; Abrams, A.J.; Basavaraju, M.; Han, S.M.; Groth, M.; Morrison, H.; Strittmatter, S.M.; Hammarlund, M. The stress-responsive gene GDPGP1/mcp-1 regulates neuronal glycogen metabolism and survival. J. Cell Biol. 2020, 219, e201807127. https://doi.org/10.1083/jcb.201807127.
- 46.
Onkar, A.; Sheshadri, D.; Ganesh, S. Glycogen: The missing link in neuronal autophagy? Autophagy 2020, 16, 2102–2104. https://doi.org/10.1080/15548627.2020.1802090.
- 47.
Adler, L.; Gomez, T.; Clarke, S.; Linster, C. A novel GDP-D-glucose phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in Caenorhabditis elegans and mammals. J. Biol. Chem. 2011, 286, 21511–21523. https://doi.org/10.1074/jbc.M111.238774.
- 48.
Li, I.H.; Ma, K.H.; Weng, S.J.; Huang, S.S.; Liang, C.M.; Huang, Y.S. Autophagy activation is involved in 3,4-methylenedioxymethamphetamine (‘ecstasy’)—induced neurotoxicity in cultured cortical neurons. PLoS ONE 2014, 9, e116565. https://doi.org/10.1371/journal.pone.0116565.
- 49.
Zirin, J.; Nieuwenhuis, J.; Perrimon, N. Role of autophagy in glycogen breakdown and its relevance to chloroquine myopathy. PLoS Biol. 2013, 11, e1001708. https://doi.org/10.1371/journal.pbio.1001708.
- 50.
Embi, N.; Rylatt, D.B.; Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem. 1980, 107, 519–527.
- 51.
Pan, H.Y.; Valapala, M. Regulation of Autophagy by the Glycogen Synthase Kinase-3 (GSK-3) Signaling Pathway. Int. J. Mol. Sci. 2022, 23, 1709. https://doi.org/10.3390/ijms23031709.
- 52.
Cline, G.W.; Johnson, K.; Regittnig, W.; Perret, P.; Tozzo, E.; Xiao, L.; Damico, C.; Shulman, G.I. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes 2002, 51, 2903–2910. https://doi.org/10.2337/diabetes.51.10.2903.
- 53.
Patel, S.; Doble, B.W.; MacAulay, K.; Sinclair, E.M.; Drucker, D.J.; Woodgett, J.R. Tissue-specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Mol. Cell Biol. 2008, 28, 6314–6328. https://doi.org/10.1128/mcb.00763-08.
- 54.
Yang, J.; Takahashi, Y.; Cheng, E.; Liu, J.; Terranova, P.F.; Zhao, B.; Thrasher, J.B.; Wang, H.G.; Li, B. GSK-3beta promotes cell survival by modulating Bif-1-dependent autophagy and cell death. J. Cell Sci. 2010, 123, 861–870. https://doi.org/10.1242/jcs.060475.
- 55.
Wang, H.; Brown, J.; Gu, Z.; Garcia, C.A.; Liang, R.; Alard, P.; Beurel, E.; Jope, R.S.; Greenway, T.; Martin, M. Convergence of the mammalian target of rapamycin complex 1- and glycogen synthase kinase 3-β-signaling pathways regulates the innate inflammatory response. J. Immunol. 2011, 186, 5217–5226. https://doi.org/10.4049/jimmunol.1002513.
- 56.
Weikel, K.A.; Cacicedo, J.M.; Ruderman, N.B.; Ido, Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci. Rep. 2016, 36, e00382. https://doi.org/10.1042/bsr20160174.
- 57.
Russi, S.; Sgambato, A.; Bochicchio, A.M.; Zoppoli, P.; Aieta, M.; Capobianco, A.M.L.; Ruggieri, V.; Zifarone, E.; Falco, G.; Laurino, S. CHIR99021, trough GSK-3β Targeting, Reduces Epithelioid Sarcoma Cell Proliferation by Activating Mitotic Catastrophe and Autophagy. Int. J. Mol. Sci. 2021, 22, 11147. https://doi.org/10.3390/ijms222011147.
- 58.
Ryu, H.Y.; Kim, L.E.; Jeong, H.; Yeo, B.K.; Lee, J.W.; Nam, H.; Ha, S.; An, H.K.; Park, H.; Jung, S.; et al. GSK3B induces autophagy by phosphorylating ULK1. Exp. Mol. Med. 2021, 53, 369–383. https://doi.org/10.1038/s12276-021-00570-6.
- 59.
Akram, M. Mini-review on glycolysis and cancer. J. Cancer Educ. 2013, 28, 454–457. https://doi.org/10.1007/s13187-013-0486-9.
- 60.
Keenan, M.M.; Chi, J.T. Alternative fuels for cancer cells. Cancer J. 2015, 21, 49–55. https://doi.org/10.1097/PPO.000000000
- 61.
Lock, R.; Roy, S.; Kenific, C.M.; Su, J.S.; Salas, E.; Ronen, S.M.; Debnath, J. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 2011, 22, 165–178. https://doi.org/10.1091/mbc.E10-06-0500.
- 62.
Lee, Y.R.; Wu, S.Y.; Chen, R.Y.; Lin, Y.S.; Yeh, T.M.; Liu, H.S. Regulation of autophagy, glucose uptake, and glycolysis under dengue virus infection. Kaohsiung J. Med. Sci. 2020, 36, 911–919. https://doi.org/10.1002/kjm2.12271.
- 63.
Dodson, M.; Darley-Usmar, V.; Zhang, J. Cellular metabolic and autophagic pathways: Traffic control by redox signaling. Free Radic. Biol. Med. 2013, 63, 207–221. https://doi.org/10.1016/j.freeradbiomed.2013.05.014.
- 64.
Colell, A.; Ricci, J.E.; Tait, S.; Milasta, S.; Maurer, U.; Bouchier-Hayes, L.; Fitzgerald, P.; Guio-Carrion, A.; Waterhouse, N.J.; Li, C.W.; et al. GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 2007, 129, 983–997. https://doi.org/10.1016/j.cell.2007.03.045.
- 65.
Craven, R.J.; Frazier, H.N.; Thibault, O. Dependence of glucose transport on autophagy and GAPDH activity. Brain Res. 2022, 1776, 147747. https://doi.org/10.1016/j.brainres.2021.147747.
- 66.
Lee, M.N.; Ha, S.H.; Kim, J.; Koh, A.; Lee, C.S.; Kim, J.H.; Jeon, H.; Kim, D.H.; Suh, P.G.; Ryu, S.H. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol. Cell Biol. 2009, 29, 3991–4001. https://doi.org/10.1128/mcb.00165-09.
- 67.
Yang, X.P.; Zheng, Y.Z.; Tan, J.; Tian, R.J.; Shen, P.; Cai, W.J.; Liao, H.Y. Circ_0020123 regulates autophagy, glycolysis, and malignancy by upregulating IRF4 through eliminating miR-193a-3p-mediated suppression of IRF4 in non-small cell lung cancer. Neoplasma 2022, 69, 392–403. https://doi.org/10.4149/neo_2022_211013N1449.
- 68.
Fan, Q.; Yang, L.; Zhang, X.; Ma, Y.; Li, Y.; Dong, L.; Zong, Z.; Hua, X.; Su, D.; Li, H.; et al. Autophagy promotes metastasis and glycolysis by upregulating MCT1 expression and Wnt/β-catenin signaling pathway activation in hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. CR 2018, 37, 9. https://doi.org/10.1186/s13046-018-0673-y.
- 69.
Li, T.; Tong, H.; Yin, H.; Luo, Y.; Zhu, J.; Qin, Z.; Yin, S.; He, W. Starvation induced autophagy promotes the progression of bladder cancer by LDHA mediated metabolic reprogramming. Cancer Cell Int. 2021, 21, 597. https://doi.org/10.1186/s12935-021-02303-1.
- 70.
Wang, X.; Li, Z.; Gao, Z.; Li, Q.; Jiang, L.; Geng, C.; Yao, X.; Shi, X.; Liu, Y.; Cao, J. Cadmium induces cell growth in A549 and HELF cells via autophagy-dependent glycolysis. Toxicol. Vitr. 2020, 66, 104834. https://doi.org/10.1016/j.tiv.2020.104834.
- 71.
Jeon, J.Y.; Lee, H.; Park, J.; Lee, M.; Park, S.W.; Kim, J.S.; Lee, M.; Cho, B.; Kim, K.; Choi, A.M.; et al. The regulation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase by autophagy in low-glycolytic hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 2015, 463, 440–446. https://doi.org/10.1016/j.bbrc.2015.05.103.
- 72.
Wang, H.J.; Park, J.Y.; Kwon, O.; Choe, E.Y.; Kim, C.H.; Hur, K.Y.; Lee, M.S.; Yun, M.; Cha, B.S.; Kim, Y.B.; et al. Chronic HMGCR/HMG-CoA reductase inhibitor treatment contributes to dysglycemia by upregulating hepatic gluconeogenesis through autophagy induction. Autophagy 2015, 11, 2089–2101. https://doi.org/10.1080/15548627.2015.1091139.
- 73.
Fang, F.; Shi, X.; Brown, M.S.; Goldstein, J.L.; Liang, G. Growth hormone acts on liver to stimulate autophagy, support glucose production, and preserve blood glucose in chronically starved mice. Proc. Natl. Acad. Sci. USA 2019, 116, 7449–7454. https://doi.org/10.1073/pnas.1901867116.
- 74.
Ezaki, J.; Matsumoto, N.; Takeda-Ezaki, M.; Komatsu, M.; Takahashi, K.; Hiraoka, Y.; Taka, H.; Fujimura, T.; Takehana, K.; Yoshida, M.; et al. Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 2011, 7, 727–736. https://doi.org/10.4161/auto.7.7.15371.
- 75.
Wang, X.P.; Huang, Z.; Li, Y.L.; Jin, K.Y.; Dong, D.J.; Wang, J.X.; Zhao, X.F. Krüppel-like factor 15 integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20-hydroxyecdysone regulation. PLoS Genet. 2022, 18, e1010229. https://doi.org/10.1371/journal.pgen.1010229.
- 76.
Yang, Y.; Zhao, C.; Yang, P.; Wang, X.; Wang, L.; Chen, A. Autophagy in cardiac metabolic control: Novel mechanisms for cardiovascular disorders. Cell Biol. Int. 2016, 40, 944–954. https://doi.org/10.1002/cbin.10626.
- 77.
Stephenson, M.C.; Leverton, E.; Khoo, E.Y.; Poucher, S.M.; Johansson, L.; Lockton, J.A.; Eriksson, J.W.; Mansell, P.; Morris, P.G.; MacDonald, I.A. Variability in fasting lipid and glycogen contents in hepatic and skeletal muscle tissue in subjects with and without type 2 diabetes: A 1H and 13C MRS study. NMR Biomed. 2013, 26, 1518–1526. https://doi.org/10.1002/nbm.2985.
- 78.
Du, Q.; Wu, X.; Ma, K.; Liu, W.; Liu, P.; Hayashi, T.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Ikejima, T. Silibinin alleviates ferroptosis of rat islet β cell INS-1 induced by the treatment with palmitic acid and high glucose through enhancing PINK1/parkin-mediated mitophagy. Arch. Biochem. Biophys. 2023, 743, 109644. https://doi.org/10.1016/j.abb.2023.109644.
- 79.
Lei, J.; Alexander, A.S.; Pamela, S.; Chendong, Y.; Seth, J.P.; Qiong, A.W.; Lance, S.T.; Nicholas, D.A.; Michael, T.M.; Beth, P.; et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 2016, 532, 255–258. https://doi.org/10.1038/nature17393.
- 80.
Xiong, Z.; Yang, L.; Zhang, C.; Huang, W.; Zhong, W.; Yi, J.; Feng, J.; Zouxu, X.; Song, L.; Wang, X. MANF facilitates breast cancer cell survival under glucose-starvation conditions via PRKN-mediated mitophagy regulation. Autophagy 2025, 21, 80–101. https://doi.org/10.1080/15548627.2024.2392415.
- 81.
Zhang, S.; Chen, S.; Sun, D.; Li, S.; Sun, J.; Gu, Q.; Liu, P.; Wang, X.; Zhu, H.; Xu, X.; et al. TIN2-mediated reduction of mitophagy induces RPE senescence under high glucose. Cell Signal 2024, 119, 111188. https://doi.org/10.1016/j.cellsig.2024.111188.
- 82.
Wu, D.; Huang, W.; Zhang, J.; He, L.; Chen, S.; Zhu, S.; Sang, Y.; Liu, K.; Hou, G.; Chen, B.; et al. Downregulation of VEGFA accelerates AGEs-mediated nucleus pulposus degeneration through inhibiting protective mitophagy in high glucose environments. Int. J. Biol. Macromol. 2024, 262, 129950. https://doi.org/10.1016/j.ijbiomac.2024.129950.
- 83.
Yang, W.; Qiu, C.; Lv, H.; Zhang, Z.; Yao, T.; Huang, L.; Wu, G.; Zhang, X.; Chen, J.; He, Y. Sirt3 Protects Retinal Pigment Epithelial Cells From High Glucose-Induced Injury by Promoting Mitophagy Through the AMPK/mTOR/ULK1 Pathway. Transl. Vis. Sci. Technol. 2024, 13, 19. https://doi.org/10.1167/tvst.13.3.19.
- 84.
Lee, H.; Cho, S.; Kim, M.J.; Park, Y.J.; Cho, E.; Jo, Y.S.; Kim, Y.S.; Lee, J.Y.; Thoudam, T.; Woo, S.H.; et al. ApoE4-dependent lysosomal cholesterol accumulation impairs mitochondrial homeostasis and oxidative phosphorylation in human astrocytes. Cell Rep. 2023, 42, 113183. https://doi.org/10.1016/j.celrep.2023.113183.
- 85.
Wang, W.; Zhang, Y.; Huang, W.; Yuan, Y.; Hong, Q.; Xie, Z.; Li, L.; Chen, Y.; Li, X.; Meng, Y. Alamandine/MrgD axis prevents TGF-β1-mediated fibroblast activation via regulation of aerobic glycolysis and mitophagy. J. Transl. Med. 2023, 21, 24. https://doi.org/10.1186/s12967-022-03837-2.
- 86.
Dai, T.; Zhang, X.; Li, M.; Tao, X.; Jin, M.; Sun, P.; Zhou, Q.; Jiao, L. Dietary vitamin K(3) activates mitophagy, improves antioxidant capacity, immunity and affects glucose metabolism in Litopenaeus vannamei. Food Funct. 2022, 13, 6362–6372. https://doi.org/10.1039/d2fo00865c.
- 87.
Li, S.; Wang, Y.; Zhang, X.; Xiong, X.; Zhou, F.; Li, X.; Fan, J.; Liang, X.; Li, G.; Peng, Y.; et al. Mitochondrial damage-induced abnormal glucose metabolism with ageing in the hippocampus of APP/PS1 mice. Metabolomics 2023, 19, 56. https://doi.org/10.1007/s11306-023-02023-9.
- 88.
Li, Z.; Meng, X.; Ma, G.; Liu, W.; Li, W.; Cai, Q.; Wang, S.; Huang, G.; Zhang, Y. Increasing brain glucose metabolism by ligustrazine piperazine ameliorates cognitive deficits through PPARγ-dependent enhancement of mitophagy in APP/PS1 mice. Alzheimers Res. Ther. 2022, 14, 150. https://doi.org/10.1186/s13195-022-01092-7.
- 89.
Su, D.; Song, Y.; Li, D.; Yang, S.; Zhan, S.; Zhong, T.; Guo, J.; Cao, J.; Li, L.; Zhang, H.; et al. Cold exposure affects glucose metabolism, lipid droplet deposition and mitophagy in skeletal muscle of newborn goats. Domest. Anim. Endocrinol. 2024, 88, 106847. https://doi.org/10.1016/j.domaniend.2024.106847.
- 90.
Li, Y.; Gao, Y.; Yu, G.; Ye, Y.; Zhu, H.; Wang, J.; Li, Y.; Chen, L.; Gu, L. G6PD protects against cerebral ischemia-reperfusion injury by inhibiting excessive mitophagy. Life Sci. 2025, 362, 123367. https://doi.org/10.1016/j.lfs.2024.123367.
- 91.
Yuan, M.; Yao, Y.; Wu, D.; Zhu, C.; Dong, S.; Tong, X. Pannexin1 inhibits autophagy of cisplatin-resistant testicular cancer cells by mediating ATP release. Cell Cycle 2022, 21, 1651–1661. https://doi.org/10.1080/15384101.2022.2060655.
- 92.
Junfang, Y.; Yi, X.; Fang, W.; Yuhong, C.; Jinhua, Z.; Zhihui, D.; Lu, G.; Hongyan, L.; Jing, S.; Chao, S.; et al. Carbon ion combined with tigecycline inhibits lung cancer cell proliferation by inducing mitochondrial dysfunction. Life Sci. 2020, 263, 118586. https://doi.org/10.1016/j.lfs.2020.118586.
- 93.
Yidan, W.; Isabelle, M.; Yuting, M.; Oliver, K.; Lorenzo, G.; Guido, K. Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy 2013, 9, 1624–1625. https://doi.org/10.4161/auto.25873.
- 94.
Michaud, M.; Martins, I.; Sukkurwala, A.; Adjemian, S.; Ma, Y.; Pellegatti, P.; Shen, S.; Kepp, O.; Scoazec, M.; Mignot, G.; et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011, 334, 1573–1577. https://doi.org/10.1126/science.1208347.
- 95.
Peynshaert, K.; Manshian, B.; Joris, F.; Braeckmans, K.; De Smedt, S.; Demeester, J.; Soenen, S. Exploiting intrinsic nanoparticle toxicity: The pros and cons of nanoparticle-induced autophagy in biomedical research. Chem. Rev. 2014, 114, 7581–7609. https://doi.org/10.1021/cr400372p.
- 96.
Naoki, I.; Urs, T.R.; Shin’ichi, T. ATP-Induced Increase in Intracellular Calcium Levels and Subsequent Activation of mTOR as Regulators of Skeletal Muscle Hypertrophy. Int. J. Mol. Sci. 2018, 19, 2804. https://doi.org/10.3390/ijms19092804.
- 97.
Bian, S.; Sun, X.; Bai, A.; Zhang, C.; Li, L.; Enjyoji, K.; Junger, W.G.; Robson, S.C.; Wu, Y. P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death. PLoS ONE 2013, 8, e60184–e60184. https://doi.org/10.1371/journal.pone.0060184.
- 98.
Jiang, Y.; Lin, J.; Zheng, H.; Zhu, P. The Role of Purinergic Signaling in Heart Transplantation. Front. Immunol. 2022, 13, 826943. https://doi.org/10.3389/fimmu.2022.826943.
- 99.
Yin, H.; Tang, X.; Peng, Y.; Wen, H.; Yang, H.; Li, S.; Zheng, X.; Xiong, Y. Pannexin-1 regulation of ATP release promotes the invasion of pituitary adenoma. J. Endocrinol. Investig. 2025, 48, 317–332. https://doi.org/10.1007/s40618-024-02445-9.
- 100.
Bartlett, P.J.; Gaspers, L.D.; Pierobon, N.; Thomas, A.P. Calcium-dependent regulation of glucose homeostasis in the liver. Cell Calcium 2014, 55, 306–316. https://doi.org/10.1016/j.ceca.2014.02.007.
- 101.
Kania, E.; Pająk, B.; Orzechowski, A. Calcium homeostasis and ER stress in control of autophagy in cancer cells. Biomed. Res. Int. 2015, 2015, 352794. https://doi.org/10.1155/2015/352794.
- 102.
Høyer-Hansen, M.; Jäättelä, M. Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ. 2007, 14, 1576–1582. https://doi.org/10.1038/sj.cdd.4402200.
- 103.
Kondratskyi, A.; Yassine, M.; Kondratska, K.; Skryma, R.; Slomianny, C.; Prevarskaya, N. Calcium-permeable ion channels in control of autophagy and cancer. Front. Physiol. 2013, 4, 272. https://doi.org/10.3389/fphys.2013.00272.
- 104.
Cárdenas, C.; Miller, R.A.; Smith, I.; Bui, T.; Molgó, J.; Müller, M.; Vais, H.; Cheung, K.H.; Yang, J.; Parker, I.; et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 2010, 142, 270–283. https://doi.org/10.1016/j.cell.2010.06.007.
- 105.
Yuan, Y.H.; Yan, W.F.; Sun, J.D.; Huang, J.Y.; Mu, Z.; Chen, N.H. The molecular mechanism of rotenone-induced α-synuclein aggregation: Emphasizing the role of the calcium/GSK3β pathway. Toxicol. Lett. 2015, 233, 163–171. https://doi.org/10.1016/j.toxlet.2014.11.029.
- 106.
Hoyer-Hansen, M.; Bastholm, L.; Szyniarowski, P.; Campanella, M.; Szabadkai, G.; Farkas, T.; Bianchi, K.; Fehrenbacher, N.; Elling, F.; Rizzuto, R.; et al. Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol. Cell 2007, 25, 193–205. https://doi.org/10.1016/j.molcel.2006.12.009.
- 107.
Shi, W.; Xu, D.; Gu, J.; Xue, C.; Yang, B.; Fu, L.; Song, S.; Liu, D.; Zhou, W.; Lv, J.; et al. Saikosaponin-d inhibits proliferation by up-regulating autophagy via the CaMKKβ-AMPK-mTOR pathway in ADPKD cells. Mol. Cell. Biochem. 2018, 449, 219–226. https://doi.org/10.1007/s11010-018-3358-0.
- 108.
Félix-Martínez, G.J.; Godínez-Fernández, J.R. Mathematical models of electrical activity of the pancreatic β-cell: A physiological review. Islets 2014, 6, e949195. https://doi.org/10.4161/19382014.2014.949195.
- 109.
Zhang, N.; Liu, F.; Zhao, Y.; Sun, X.; Wen, B.; Lu, J.Q.; Yan, C.; Li, D. Defect in degradation of glycogenin-exposed residual glycogen in lysosomes is the fundamental pathomechanism of Pompe disease. J. Pathol. 2024, Online ahead of print. https://doi.org/10.1002/path.6255.
- 110.
Kalamidas, S.A.; Kotoulas, O.B.; Hann, A.C. Studies on glycogen autophagy: Effects of phorbol myristate acetate, ionophore A23187, or phentolamine. Microsc. Res. Tech. 2002, 57, 507–511. https://doi.org/10.1002/jemt.10104.
- 111.
Santoni, G.; Santoni, M.; Nabissi, M. Functional role of T-type calcium channels in tumour growth and progression: Prospective in cancer therapy. Br. J. Pharmacol. 2012, 166, 1244–1246. https://doi.org/10.1111/j.1476-5381.2012.01908.x.
- 112.
Andrea, W.; Sovan, S.; Paul, C.; Evangelia, K.T.; Shinji, S.; Farah, H.S.; Luca, J.; Angeleen, F.; Dean, P.; Paul, G.; et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 2008, 4, 295–305. https://doi.org/10.1038/nchembio.79.
- 113.
Busch Sørensen, M.; Sjøstrand, H.; Sengeløv, H.; Tiefenthal Thrane, M.; Juul Holst, J.; Lyngsøe, J. Influence of short term verapamil treatment on glucose metabolism in patients with non-insulin dependent diabetes mellitus. Eur. J. Clin. Pharmacol. 1991, 41, 401–404. https://doi.org/10.1007/bf00626359.
- 114.
Ardizzone, T.D.; Lu, X.H.; Dwyer, D.S. Calcium-independent inhibition of glucose transport in PC-12 and L6 cells by calcium channel antagonists. Am. J. Physiol. Cell Physiol. 2002, 283, C579–C586. https://doi.org/10.1152/ajpcell.00451.2001.
- 115.
Pajak, B.; Kania, E.; Gajkowska, B.; Orzechowski, A. Verapamil-induced autophagy-like process in colon adenocarcinoma COLO 205 cells; the ultrastructural studies. Pharmacol. Rep. 2012, 64, 991–996. https://doi.org/10.1016/s1734-1140(12)70896-4.
- 116.
Tomar, D.; Elrod, J.W. Metabolite regulation of the mitochondrial calcium uniporter channel. Cell Calcium 2020, 92, 102288. https://doi.org/10.1016/j.ceca.2020.102288.
- 117.
Gray, L.R.; Sultana, M.R.; Rauckhorst, A.J.; Oonthonpan, L.; Tompkins, S.C.; Sharma, A.; Fu, X.; Miao, R.; Pewa, A.D.; Brown, K.S.; et al. Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis. Cell Metab. 2015, 22, 669–681. https://doi.org/10.1016/j.cmet.2015.07.027.
- 118.
Nemani, N.; Dong, Z.; Daw, C.C.; Madaris, T.R.; Ramachandran, K.; Enslow, B.T.; Rubannelsonkumar, C.S.; Shanmughapriya, S.; Mallireddigari, V.; Maity, S.; et al. Mitochondrial pyruvate and fatty acid flux modulate MICU1-dependent control of MCU activity. Sci. Signal 2020, 13, eaaz6206. https://doi.org/10.1126/scisignal.aaz6206.
- 119.
Fan, Y.; Wang, N.; Rocchi, A.; Zhang, W.; Vassar, R.; Zhou, Y.; He, C. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy 2017, 13, 41–56. https://doi.org/10.1080/15548627.2016.1240855.
- 120.
Goginashvili, A.; Zhang, Z.; Erbs, E.; Spiegelhalter, C.; Kessler, P.; Mihlan, M.; Pasquier, A.; Krupina, K.; Schieber, N.; Cinque, L.; et al. Insulin granules. Insulin secretory granules control autophagy in pancreatic β cells. Science 2015, 347, 878–882. https://doi.org/10.1126/science.aaa2628.
- 121.
Rutter, G.A. Cell biology. Pancreas micromanages autophagy. Science 2015, 347, 826–827. https://doi.org/10.1126/science.aaa
- 122.
Yamamoto, S.; Kuramoto, K.; Wang, N.; Situ, X.; Priyadarshini, M.; Zhang, W.; Cordoba-Chacon, J.; Layden, B.; He, C. Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity. Cell Rep. 2018, 23, 3286–3299. https://doi.org/10.1016/j.celrep.2018.05.032.
- 123.
Bartolome, A.; Guillen, C.; Benito, M. Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic β cell death. Autophagy 2012, 8, 1757–1768. https://doi.org/10.4161/auto.21994.
- 124.
Sheng, Q.; Xiao, X.; Prasadan, K.; Chen, C.; Ming, Y.; Fusco, J.; Gangopadhyay, N.N.; Ricks, D.; Gittes, G.K. Autophagy protects pancreatic beta cell mass and function in the setting of a high-fat and high-glucose diet. Sci. Rep. 2017, 7, 16348. https://doi.org/10.1038/s41598-017-16485-0.
- 125.
Bachar-Wikstrom, E.; Wikstrom, J.D.; Ariav, Y.; Tirosh, B.; Kaiser, N.; Cerasi, E.; Leibowitz, G. Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 2013, 62, 1227–1237. https://doi.org/10.2337/db12-1474.
- 126.
Wang, P.; Li, J.; Li, C.G.; Zhou, X.; Chen, X.; Zhu, M.; Wang, H. Restoring Autophagy by Exercise Ameliorates Insulin Resistance Partly via Calcineurin-Driven TFEB Nuclear Translocation. Clin. Exp. Pharmacol. Physiol. 2025, 52, e70010. https://doi.org/10.1111/1440-1681.70010.
- 127.
Luan, B.; Sun, C. MiR-138-5p affects insulin resistance to regulate type 2 diabetes progression through inducing autophagy in HepG2 cells by regulating SIRT1. Nutr. Res. 2018, 59, 90–98. https://doi.org/10.1016/j.nutres.2018.05.001.
- 128.
Kang, Y.H.; Cho, M.H.; Kim, J.Y.; Kwon, M.S.; Peak, J.J.; Kang, S.W.; Yoon, S.Y.; Song, Y. Impaired macrophage autophagy induces systemic insulin resistance in obesity. Oncotarget 2016, 7, 35577–35591. https://doi.org/10.18632/oncotarget.9590.
- 129.
Cai, J.; Pires, K.M.; Ferhat, M.; Chaurasia, B.; Buffolo, M.A.; Smalling, R.; Sargsyan, A.; Atkinson, D.L.; Summers, S.A.; Graham, T.E.; et al. Autophagy Ablation in Adipocytes Induces Insulin Resistance and Reveals Roles for Lipid Peroxide and Nrf2 Signaling in Adipose-Liver Crosstalk. Cell Rep. 2018, 25, 1708–1717.e1705. https://doi.org/10.1016/j.celrep.2018.10.040.
- 130.
Rovira-Llopis, S.; Diaz-Morales, N.; Banuls, C.; Blas-Garcia, A.; Polo, M.; Lopez-Domenech, S.; Jover, A.; Rocha, M.; Hernandez-Mijares, A.; Victor, V.M. Is Autophagy Altered in the Leukocytes of Type 2 Diabetic Patients? Antioxid. Redox Signal. 2015, 23, 1050–1056. https://doi.org/10.1089/ars.2015.6447.
- 131.
Song, R.; Zhao, X.; Cao, R.; Liang, Y.; Zhang, D.Q.; Wang, R. Irisin improves insulin resistance by inhibiting autophagy through the PI3K/Akt pathway in H9c2 cells. Gene 2021, 769, 145209. https://doi.org/10.1016/j.gene.2020.145209.
- 132.
Kim, K.H.; Jeong, Y.T.; Oh, H.; Kim, S.H.; Cho, J.M.; Kim, Y.N.; Kim, S.S.; Kim, D.H.; Hur, K.Y.; Kim, H.K.; et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 2013, 19, 83–92. https://doi.org/10.1038/nm.3014.
- 133.
Li, S.; Li, H.; Yang, D.; Yu, X.; Irwin, D.M.; Niu, G.; Tan, H. Excessive Autophagy Activation and Increased Apoptosis Are Associated with Palmitic Acid-Induced Cardiomyocyte Insulin Resistance. J. Diabetes Res. 2017, 2017, 2376893. https://doi.org/10.1155/2017/2376893.
- 134.
Feng, J.; Li, J.; Wu, L.; Yu, Q.; Ji, J.; Wu, J.; Dai, W.; Guo, C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. CR 2020, 39, 126. https://doi.org/10.1186/s13046-020-01629-4.
- 135.
Prieto-Dominguez, N.; Ordonez, R.; Fernandez, A.; Garcia-Palomo, A.; Muntane, J.; Gonzalez-Gallego, J.; Mauriz, J.L. Modulation of Autophagy by Sorafenib: Effects on Treatment Response. Front. Pharmacol. 2016, 7, 151. https://doi.org/10.3389/fphar.2016.00151.
- 136.
Yan, X.; Tian, R.; Sun, J.; Zhao, Y.; Liu, B.; Su, J.; Li, M.; Sun, W.; Xu, X. Sorafenib-Induced Autophagy Promotes Glycolysis by Upregulating the p62/HDAC6/HSP90 Axis in Hepatocellular Carcinoma Cells. Front. Pharmacol. 2021, 12, 788667. https://doi.org/10.3389/fphar.2021.788667.
- 137.
Cao, B.; Deng, H.; Cui, H.; Zhao, R.; Li, H.; Wei, B.; Chen, L. Knockdown of PGM1 enhances anticancer effects of orlistat in gastric cancer under glucose deprivation. Cancer Cell Int. 2021, 21, 481. https://doi.org/10.1186/s12935-021-02193-3.
- 138.
Peng, H.; Wang, Q.; Qi, X.; Wang, X.; Zhao, X. Orlistat induces apoptosis and protective autophagy in ovarian cancer cells: Involvement of Akt-mTOR-mediated signaling pathway. Arch. Gynecol. Obstet. 2018, 298, 597–605. https://doi.org/10.1007/s00404-018-4841-2.
- 139.
Sun, B.; Ou, H.; Ren, F.; Huan, Y.; Zhong, T.; Gao, M.; Cai, H.J.M.m. Propofol inhibited autophagy through Ca/CaMKKβ/AMPK/mTOR pathway in OGD/R-induced neuron injury. Mol. Med. 2018, 24, 58. https://doi.org/10.1186/s10020-018-0054-1.
- 140.
Li, A.; Yi, B.; Han, H.; Yang, S.; Hu, Z.; Zheng, L.; Wang, J.; Liao, Q.; Zhang, H. Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway. Autophagy 2022, 18, 877–890. https://doi.org/10.1080/15548627.2021.1962681.
- 141.
Rim, H.K.; Cho, S.; Shin, D.H.; Chung, K.S.; Cho, Y.W.; Choi, J.H.; Lee, J.Y.; Lee, K.T. T-type Ca2+ channel blocker, KYS05090 induces autophagy and apoptosis in A549 cells through inhibiting glucose uptake. Molecules 2014, 19, 9864–9875. https://doi.org/10.3390/molecules19079864.