- 1.
Popovic, D.; Vucic, D.; Dikic, I. Ubiquitination in Disease Pathogenesis and Treatment. Nat. Med. 2014, 20, 1242–1253. https://doi.org/10.1038/nm.3739.
- 2.
Lacoursiere, R.E.; Hadi, D.; Shaw, G.S. Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Biomolecules 2022, 12, 467. https://doi.org/10.3390/biom12030467.
- 3.
Fraile, J.M.; Quesada, V.; Rodríguez, D.; Freije, J.M.P.; López-Otín, C. Deubiquitinases in Cancer: New Functions and Therapeutic Options. Oncogene 2012, 31, 2373–2388. https://doi.org/10.1038/onc.2011.443.
- 4.
Kim, Y.; Kim, E.K.; Chey, Y.; Song, M.J.; Jang, H.H. Targeted Protein Degradation: Principles and Applications of the Proteasome. Cells 2023, 12, 1846. https://doi.org/10.3390/cells12141846.
- 5.
Chen, S.; Liu, Y.; Zhou, H. Advances in the Development Ubiquitin-Specific Peptidase (USP) Inhibitors. Int. J. Mol. Sci. 2021, 22, 4546. https://doi.org/10.3390/ijms22094546.
- 6.
Everett, R.D.; Meredith, M.; Orr, A.; Cross, A.; Kathoria, M.; Parkinson, J. A Novel Ubiquitin-Specific Protease Is Dynamically Associated with the PML Nuclear Domain and Binds to a Herpesvirus Regulatory Protein. EMBO J. 1997, 16, 566–577. https://doi.org/10.1093/emboj/16.3.566.
- 7.
Bhattacharya, S.; Chakraborty, D.; Basu, M.; Ghosh, M.K. Emerging Insights into HAUSP (USP7) in Physiology, Cancer and Other Diseases. Signal Transduct. Target. Ther. 2018, 3, 17. https://doi.org/10.1038/s41392-018-0012-y.
- 8.
Granieri, L.; Marocchi, F.; Melixetian, M.; Mohammadi, N.; Nicoli, P.; Cuomo, A.; Bonaldi, T.; Confalonieri, S.; Pisati, F.; Giardina, G.; et al. Targeting the USP7/RRM2 Axis Drives Senescence and Sensitizes Melanoma Cells to HDAC/LSD1 Inhibitors. Cell Rep. 2022, 40, 111396. https://doi.org/10.1016/j.celrep.2022.111396.
- 9.
Liu, X.; Lu, R.; Yang, Q.; He, J.; Huang, C.; Cao, Y.; Zhou, Z.; Huang, J.; Li, L.; Chen, R.; et al. USP7 Reduces the Level of Nuclear DICER, Impairing DNA Damage Response and Promoting Cancer Progression. Mol. Oncol. 2024, 18, 170–189. https://doi.org/10.1002/1878-0261.13543.
- 10.
Tavana, O.; Gu, W. Modulation of the P53/MDM2 Interplay by HAUSP Inhibitors. J. Mol. Cell Biol. 2017, 9, 45–52. https://doi.org/10.1093/jmcb/mjw049.
- 11.
Ji, L.; Lu, B.; Zamponi, R.; Charlat, O.; Aversa, R.; Yang, Z.; Sigoillot, F.; Zhu, X.; Hu, T.; Reece-Hoyes, J.S.; et al. USP7 Inhibits Wnt/β-Catenin Signaling through Promoting Stabilization of Axin. Nat. Commun. 2019, 10, 4184. https://doi.org/10.1038/s41467-019-12143-3.
- 12.
Franqui-Machin, R.; Hao, M.; Bai, H.; Gu, Z.; Zhan, X.; Habelhah, H.; Jethava, Y.; Qiu, L.; Frech, I.; Tricot, G.; et al. Destabilizing NEK2 Overcomes Resistance to Proteasome Inhibition in Multiple Myeloma. J. Clin. Investig. 2018, 128, 2877–2893. https://doi.org/10.1172/JCI98765.
- 13.
Saha, G.; Roy, S.; Basu, M.; Ghosh, M.K. USP7—A Crucial Regulator of Cancer Hallmarks. Biochim. Biophys. Acta BBA—Rev. Cancer 2023, 1878, 188903. https://doi.org/10.1016/j.bbcan.2023.188903.
- 14.
Birks, E.J.; Latif, N.; Enesa, K.; Folkvang, T.; Luong, L.A.; Sarathchandra, P.; Khan, M.; Ovaa, H.; Terracciano, C.M.; Barton, P.J.R.; et al. Elevated P53 Expression Is Associated with Dysregulation of the Ubiquitin-Proteasome System in Dilated Cardiomyopathy. Cardiovasc. Res. 2008, 79, 472–480. https://doi.org/10.1093/cvr/cvn083.
- 15.
Zhang, X.W.; Feng, N.; Liu, Y.C.; Guo, Q.; Wang, J.K.; Bai, Y.Z.; Ye, X.M.; Yang, Z.; Yang, H.; Liu, Y.; et al. Neuroinflammation inhibition by small-molecule targeting USP7 noncatalytic domain for neurodegenerative disease therapy. Sci. Adv. 2022, 8, eabo0789. https://doi.org/10.1126/sciadv.abo0789.
- 16.
Hao, Y.H.; Fountain, M.D.; Fon Tacer, K.; Xia, F.; Bi, W.; Kang, S.H.; Patel, A.; Rosenfeld, J.A.; Le Caignec, C.; Isidor, B.; et al. USP7 Acts as a Molecular Rheostat to Promote WASH-Dependent Endosomal Protein Recycling and Is Mutated in a Human Neurodevelopmental Disorder. Mol. Cell. 2015, 59, 956–969. https://doi.org/10.1016/j.molcel.2015.07.033.
- 17.
Oliveira, R.I.; Guedes, R.A.; Salvador, J.A.R. Highlights in USP7 Inhibitors for Cancer Treatment. Front. Chem. 2022, 10, 1005727. https://doi.org/10.3389/fchem.2022.1005727.
- 18.
Shi, L.; Xu, Z.; Chen, X.; Meng, Q.; Zhou, H.; Xiong, B.; Zhang, N. Sertraline and Astemizole Enhance the Deubiquitinase Activity of USP7 by Binding to Its Switching Loop Region. J. Med. Chem. 2025, 68, 5874–5890. https://doi.org/10.1021/acs.jmedchem.5c00032.
- 19.
Maisonet, I.J.; Sharafi, M.; Korchak, E.J.; Salazar-Chaparro, A.; Bratt, A.; Parikh, T.; Varca, A.C.; Shah, B.; Darnowski, M.; Chung, M.; et al. Small-Molecule Allosteric Activator of Ubiquitin-Specific Protease 7 (USP7). bioRxiv 2025, 2025, 643379. https://doi.org/10.1101/2025.03.14.643379.
- 20.
Saridakis, V.; Sheng, Y.; Sarkari, F.; Holowaty, M.N.; Shire, K.; Nguyen, T.; Zhang, R.G.; Liao, J.; Lee, W.; Edwards, A.M.; et al. Structure of the P53 Binding Domain of HAUSP/USP7 Bound to Epstein-Barr Nuclear Antigen 1. Mol. Cell. 2005, 18, 25–36. https://doi.org/10.1016/j.molcel.2005.02.029.
- 21.
Pozhidaeva, A.; Bezsonova, I. USP7: Structure, Substrate Specificity, and Inhibition. DNA Repair 2019, 76, 30–39. https://doi.org/10.1016/j.dnarep.2019.02.005.
- 22.
Harakandi, C.; Nininahazwe, L.; Xu, H.; Liu, B.; He, C.; Zheng, Y.C.; Zhang, H. Recent Advances on the Intervention Sites Targeting USP7-MDM2-P53 in Cancer Therapy. Bioorg. Chem. 2021, 116, 105273. https://doi.org/10.1016/j.bioorg.2021.105273.
- 23.
Hu, M.; Li, P.; Li, M.; Li, W.; Yao, T.; Wu, J.W.; Gu, W.; Cohen, R.E.; Shi, Y. Crystal Structure of a UBP-Family Deubiquitinating Enzyme in Isolation and in Complex with Ubiquitin Aldehyde. Cell 2002, 111, 1041–1054. https://doi.org/10.1016/s0092-8674(02)01199-6.
- 24.
Nininahazwe, L.; Liu, B.; He, C.; Zhang, H.; Chen, Z.S. The Emerging Nature of Ubiquitin-Specific Protease 7 (USP7): A New Target in Cancer Therapy. Drug Discov. Today. 2021, 26, 490–502. https://doi.org/10.1016/j.drudis.2020.10.028.
- 25.
Guo, N.J.; Wang, B.; Zhang, Y.; Kang, H.Q.; Nie, H.Q.; Feng, M.K.; Zhang, X.Y.; Zhao, L.J.; Wang, N.; Liu, H.M.; et al. USP7 as an Emerging Therapeutic Target: A Key Regulator of Protein Homeostasis. Int. J. Biol. Macromol. 2024, 263, 130309. https://doi.org/10.1016/j.ijbiomac.2024.130309.
- 26.
Rougé, L.; Bainbridge, T.W.; Kwok, M.; Tong, R.; Di Lello, P.; Wertz, I.E.; Maurer, T.; Ernst, J.A.; Murray, J. Molecular Understanding of USP7 Substrate Recognition and C-Terminal Activation. Structure 2016, 24, 1335–1345. https://doi.org/10.1016/j.str.2016.05.020.
- 27.
Holowaty, M.N.; Sheng, Y.; Nguyen, T.; Arrowsmith, C.; Frappier, L. Protein Interaction Domains of the Ubiquitin-Specific Protease, USP7/HAUSP. J. Biol. Chem. 2003, 278, 47753–47761. https://doi.org/10.1074/jbc.M307200200.
- 28.
Zhang, Z.M.; Rothbart, S.B.; Allison, D.F.; Cai, Q.; Harrison, J.S.; Li, L.; Wang, Y.; Strahl, B.D.; Wang, G.G.; Song, J. An Allosteric Interaction Links USP7 to Deubiquitination and Chromatin Targeting of UHRF1. Cell Rep. 2015, 12, 1400–1406. https://doi.org/10.1016/j.celrep.2015.07.046.
- 29.
Cheng, J.; Yang, H.; Fang, J.; Ma, L.; Gong, R.; Wang, P.; Li, Z.; Xu, Y. Molecular Mechanism for USP7-Mediated DNMT1 Stabilization by Acetylation. Nat. Commun. 2015, 6, 7023. https://doi.org/10.1038/ncomms8023.
- 30.
van der Horst, A.; de Vries-Smits, A.M.M.; Brenkman, A.B.; van Triest, M.H.; van den Broek, N.; Colland, F.; Maurice, M.M.; Burgering, B.M.T. FOXO4 Transcriptional Activity Is Regulated by Monoubiquitination and USP7/HAUSP. Nat. Cell Biol. 2006, 8, 1064–1073. https://doi.org/10.1038/ncb1469.
- 31.
Faesen, A.C.; Dirac, A.M.; Shanmugham, A.; Ovaa, H.; Perrakis, A.; Sixma, T.K. Mechanism of USP7/HAUSP Activation by Its C-Terminal Ubiquitin-like Domain and Allosteric Regulation by GMP-Synthetase. Mol. Cell. 2011, 44, 147–159. https://doi.org/10.1016/j.molcel.2011.06.034.
- 32.
Jenkins, Y.; Markovtsov, V.; Lang, W.; Sharma, P.; Pearsall, D.; Warner, J.; Franci, C.; Huang, B.; Huang, J.; Yam, G.C.; et al. Critical Role of the Ubiquitin Ligase Activity of UHRF1, a Nuclear RING Finger Protein, in Tumor Cell Growth. Mol. Biol. Cell. 2005, 16, 5621–5629. https://doi.org/10.1091/mbc.e05-03-0194.
- 33.
Qin, W.; Wolf, P.; Liu, N.; Link, S.; Smets, M.; Mastra, F.L.; Forné, I.; Pichler, G.; Hörl, D.; Fellinger, K.; et al. DNA Methylation Requires a DNMT1 Ubiquitin Interacting Motif (UIM) and Histone Ubiquitination. Cell Res. 2015, 25, 911–929. https://doi.org/10.1038/cr.2015.72.
- 34.
Qin, W.; Leonhardt, H.; Spada, F. Usp7 and Uhrf1 Control Ubiquitination and Stability of the Maintenance DNA Methyltransferase Dnmt1. J. Cell. Biochem. 2011, 112, 439–444. https://doi.org/10.1002/jcb.22998.
- 35.
Li, J.; Wang, R.; Jin, J.; Han, M.; Chen, Z.; Gao, Y.; Hu, X.; Zhu, H.; Gao, H.; Lu, K.; et al. USP7 Negatively Controls Global DNA Methylation by Attenuating Ubiquitinated Histone-Dependent DNMT1 Recruitment. Cell Discov. 2020, 6, 58. https://doi.org/10.1038/s41421-020-00188-4.
- 36.
Sharma, S.S.; Pledger, W.J.; Kondaiah, P. The Deubiquitylase USP7 Is a Novel Cyclin F-Interacting Protein and Regulates Cyclin F Protein Stability. Aging 2022, 14, 8645–8660. https://doi.org/10.18632/aging.204372.
- 37.
Galarreta, A.; Valledor, P.; Ubieto-Capella, P.; Lafarga, V.; Zarzuela, E.; Muñoz, J.; Malumbres, M.; Lecona, E.; Fernandez-Capetillo, O. USP7 Limits CDK1 Activity throughout the Cell Cycle. EMBO J. 2021, 40, e99692. https://doi.org/10.15252/embj.201899692.
- 38.
Jackson, S.P.; Bartek, J. The DNA-Damage Response in Human Biology and Disease. Nature 2009, 461, 1071–1078. https://doi.org/10.1038/nature08467.
- 39.
Wang, R.; Sun, Y.; Li, C.; Xue, Y.; Ba, X. Targeting the DNA Damage Response for Cancer Therapy. Int. J. Mol. Sci. 2023, 24, 15907. https://doi.org/10.3390/ijms242115907.
- 40.
Liu, J.; Zhou, T.; Dong, X.; Guo, Q.; Zheng, L.; Wang, X.; Zhang, N.; Li, D.; Ren, L.; Yi, F.; et al. De-Ubiquitination of SAMHD1 by USP7 Promotes DNA Damage Repair to Overcome Oncogenic Stress and Affect Chemotherapy Sensitivity. Oncogene 2023, 42, 1843–1856. https://doi.org/10.1038/s41388-023-02667-w.
- 41.
Daddacha, W.; Koyen, A.E.; Bastien, A.J.; Head, P.E.; Dhere, V.R.; Nabeta, G.N.; Connolly, E.C.; Werner, E.; Madden, M.Z.; Daly, M.B.; et al. SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination. Cell Rep. 2017, 20, 1921–1935. https://doi.org/10.1016/j.celrep.2017.08.008.
- 42.
Lu, H.; Shamanna, R.A.; de Freitas, J.K.; Okur, M.; Khadka, P.; Kulikowicz, T.; Holland, P.P.; Tian, J.; Croteau, D.L.; Davis, A.J.; et al. Cell Cycle-Dependent Phosphorylation Regulates RECQL4 Pathway Choice and Ubiquitination in DNA Double-Strand Break Repair. Nat. Commun. 2017, 8, 2039. https://doi.org/10.1038/s41467-017-02146-3.
- 43.
Huang, Q.; Qin, D.; Pei, D.; Vermeulen, M.; Zhang, X. UBE2O and USP7 Co-Regulate RECQL4 Ubiquitinylation and Homologous Recombination-Mediated DNA Repair. FASEB J. 2022, 36, e22112. https://doi.org/10.1096/fj.202100974RRR.
- 44.
Lin, N.Y.; Chen, C.W.; Kagwiria, R.; Liang, R.; Beyer, C.; Distler, A.; Luther, J.; Engelke, K.; Schett, G.; Distler, J.H. Inactivation of Autophagy Ameliorates Glucocorticoid-Induced and Ovariectomy-Induced Bone Loss. Ann. Rheum. Dis. 2016, 75, 1203–1210. https://doi.org/10.1136/annrheumdis-2015-207240.
- 45.
Klionsky, D.J.; Petroni, G.; Amaravadi, R.K.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cadwell, K.; Cecconi, F.; Choi, A.M.K.; et al. Autophagy in Major Human Diseases. EMBO J. 2021, 40, e108863. https://doi.org/10.15252/embj.2021108863.
- 46.
Pluciennik, A.; Liu, Y.; Molotsky, E.; Marsh, G.B.; Ranxhi, B.; Arnold, F.J.; St. Cyr, S.; Davidson, B.; Pourshafie, N.; Lieberman, A.P.; et al. Deubiquitinase USP7 Contributes to the Pathogenicity of Spinal and Bulbar Muscular Atrophy. J. Clin. Investig. 2021, 131, e134565. https://doi.org/10.1172/JCI134565.
- 47.
Lu, X.; Zhang, Y.; Zheng, Y.; Chen, B. The miRNA-15b/USP7/KDM6B Axis Engages in the Initiation of Osteoporosis by Modulating Osteoblast Differentiation and Autophagy. J. Cell. Mol. Med. 2021, 25, 2069–2081. https://doi.org/10.1111/jcmm.16139.
- 48.
Keshri, S.; Vicinanza, M.; Takla, M.; Rubinsztein, D.C. USP7 Protects TFEB from Proteasome-Mediated degradationUSP7. Cell Rep. 2024, 43, 114872. https://doi.org/10.1016/j.celrep.2024.114872.
- 49.
Reed, S.M.; Quelle, D.E. P53 Acetylation: Regulation and Consequences. Cancers 2015, 7, 30–69. https://doi.org/10.3390/cancers7010030.
- 50.
Lee, J.T.; Gu, W. The Multiple Levels of Regulation by P53 Ubiquitination. Cell Death Differ. 2010, 17, 86–92. https://doi.org/10.1038/cdd.2009.77.
- 51.
Sheng, Y.; Saridakis, V.; Sarkari, F.; Duan, S.; Wu, T.; Arrowsmith, C.H.; Frappier, L. Molecular Recognition of P53 and MDM2 by USP7/HAUSP. Nat. Struct. Mol. Biol. 2006, 13, 285–291. https://doi.org/10.1038/nsmb1067.
- 52.
Bonacci, T.; Emanuele, M.J. Dissenting Degradation: Deubiquitinases in Cell Cycle and Cancer. Semin. Cancer Biol. 2020, 67, 145–158. https://doi.org/10.1016/j.semcancer.2020.03.008.
- 53.
Qi, S.M.; Cheng, G.; Cheng, X.D.; Xu, Z.; Xu, B.; Zhang, W.D.; Qin, J.J. Targeting USP7-Mediated Deubiquitination of MDM2/MDMX-P53 Pathway for Cancer Therapy: Are We There Yet? Front. Cell Dev. Biol. 2020, 8, 233. https://doi.org/10.3389/fcell.2020.00233.
- 54.
Kwon, S.K.; Saindane, M.; Baek, K.H. P53 Stability Is Regulated by Diverse Deubiquitinating Enzymes. Biochim. Biophys. Acta BBA—Rev. Cancer 2017, 1868, 404–411. https://doi.org/10.1016/j.bbcan.2017.08.001.
- 55.
Rawat, R.; Starczynowski, D.T.; Ntziachristos, P. Nuclear Deubiquitination in the Spotlight: The Multifaceted Nature of USP7 Biology in Disease. Curr. Opin. Cell Biol. 2019, 58, 85–94. https://doi.org/10.1016/j.ceb.2019.02.008.
- 56.
Aberle, H.; Bauer, A.; Stappert, J.; Kispert, A.; Kemler, R. Beta-catenin Is a Target for the Ubiquitin–Proteasome Pathway. EMBO J. 1997, 16, 3797–3804. https://doi.org/10.1093/emboj/16.13.3797.
- 57.
An, T.; Gong, Y.; Li, X.; Kong, L.; Ma, P.; Gong, L.; Zhu, H.; Yu, C.; Liu, J.; Zhou, H.; et al. USP7 Inhibitor P5091 Inhibits Wnt Signaling and Colorectal Tumor Growth. Biochem. Pharmacol. 2017, 131, 29–39. https://doi.org/10.1016/j.bcp.2017.02.011.
- 58.
Novellasdemunt, L.; Foglizzo, V.; Cuadrado, L.; Antas, P.; Kucharska, A.; Encheva, V.; Snijders, A.P.; Li, V.S.W. USP7 Is a Tumor-Specific WNT Activator for APC-Mutated Colorectal Cancer by Mediating β-Catenin Deubiquitination. Cell Rep. 2017, 21, 612–627. https://doi.org/10.1016/j.celrep.2017.09.072.
- 59.
Novellasdemunt, L.; Kucharska, A.; Baulies, A.; Hutton, C.; Vlachogiannis, G.; Repana, D.; Rowan, A.; Suárez-Bonnet, A.; Ciccarelli, F.; Valeri, N.; et al. USP7 Inactivation Suppresses APC-Mutant Intestinal Hyperproliferation and Tumor Development. Stem Cell Rep. 2023, 18, 570–584. https://doi.org/10.1016/j.stemcr.2022.12.013.
- 60.
Zhang, F.; Zhang, B.; Tang, R.; Jiang, H.; Ji, Z.; Chen, Y.; Feng, H. The Occurrence of Lupus Nephritis Is Regulated by USP7-Mediated JMJD3 Stabilization. Immunol. Lett. 2021, 235, 41–50. https://doi.org/10.1016/j.imlet.2021.04.006.
- 61.
Colleran, A.; Collins, P.E.; O’Carroll, C.; Ahmed, A.; Mao, X.; McManus, B.; Kiely, P.A.; Burstein, E.; Carmody, R.J. Deubiquitination of NF-κB by Ubiquitin-Specific Protease-7 Promotes Transcription. Proc. Natl. Acad. Sci. USA 2013, 110, 618–623. https://doi.org/10.1073/pnas.1208446110.
- 62.
Yu, H.; Lin, L.; Zhang, Z.; Zhang, H.; Hu, H. Targeting NF-κB Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduct. Target. Ther. 2020, 5, 1–23. https://doi.org/10.1038/s41392-020-00312-6.
- 63.
Yao, Y.; Zhang, Y.; Shi, M.; Sun, Y.; Chen, C.; Niu, M.; Zhang, Q.; Zeng, L.; Yao, R.; Li, H.; et al. Blockade of Deubiquitinase USP7 Overcomes Bortezomib Resistance by Suppressing NF-κB Signaling Pathway in Multiple Myeloma. J. Leukoc. Biol. 2018, 104, 1105–1115. https://doi.org/10.1002/JLB.2A1017-420RR.
- 64.
Ye, M.; He, J.; Zhang, J.; Liu, B.; Liu, X.; Xie, L.; Wei, M.; Dong, R.; Li, K.; Ma, D.; et al. USP7 Promotes Hepatoblastoma Progression through Activation of PI3K/AKT Signaling Pathway. Cancer Biomark. 2021, 31, 107–117. https://doi.org/10.3233/CBM-200052.
- 65.
Weng, A.P.; Ferrando, A.A.; Lee, W.; Morris, J.P.; Silverman, L.B.; Sanchez-Irizarry, C.; Blacklow, S.C.; Look, A.T.; Aster, J.C. Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia. Science 2004, 306, 269–271. https://doi.org/10.1126/science.1102160.
- 66.
Shan, H.; Li, X.; Xiao, X.; Dai, Y.; Huang, J.; Song, J.; Liu, M.; Yang, L.; Lei, H.; Tong, Y.; et al. USP7 Deubiquitinates and Stabilizes NOTCH1 in T-Cell Acute Lymphoblastic Leukemia. Signal Transduct. Target. Ther. 2018, 3, 1–10. https://doi.org/10.1038/s41392-018-0028-3.
- 67.
Jin, Q.; Martinez, C.A.; Arcipowski, K.M.; Zhu, Y.; Gutierrez-Diaz, B.T.; Wang, K.K.; Johnson, M.R.; Volk, A.G.; Wang, F.; Wu, J.; et al. USP7 Cooperates with NOTCH1 to Drive the Oncogenic Transcriptional Program in T-Cell Leukemia. Clin. Cancer Res. 2019, 25, 222–239. https://doi.org/10.1158/1078-0432.CCR-18-1740.
- 68.
van Loosdregt, J.; Fleskens, V.; Fu, J.; Brenkman, A.B.; Bekker, C.P.J.; Pals, C.E.G.M.; Meerding, J.; Berkers, C.R.; Barbi, J.; Gröne, A.; et al. Stabilization of the Transcription Factor Foxp3 by the Deubiquitinase USP7 Increases Treg-Cell-Suppressive Capacity. Immunity 2013, 39, 259–271. https://doi.org/10.1016/j.immuni.2013.05.018.
- 69.
Wang, L.; Kumar, S.; Dahiya, S.; Wang, F.; Wu, J.; Newick, K.; Han, R.; Samanta, A.; Beier, U.H.; Akimova, T.; et al. Ubiquitin-Specific Protease-7 Inhibition Impairs Tip60-Dependent Foxp3 + T-Regulatory Cell Function and Promotes Antitumor Immunity. EBioMedicine 2016, 13, 99–112. https://doi.org/10.1016/j.ebiom.2016.10.018.
- 70.
Colombino, M.; Paliogiannis, P.; Cossu, A.; Santeufemia, D.A.; Pazzola, A.; Fadda, G.M.; Pirina, P.; Fois, A.; Putzu, C.; Ginesu, G.; et al. EGFR, KRAS, BRAF, ALK, and cMET Genetic Alterations in 1440 Sardinian Patients with Lung Adenocarcinoma. BMC Pulm. Med. 2019, 19, 209. https://doi.org/10.1186/s12890-019-0964-x.
- 71.
Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS Oncogenes: Weaving a Tumorigenic Web. Nat. Rev. Cancer 2011, 11, 761–774. https://doi.org/10.1038/nrc3106.
- 72.
Huang, B.; Cao, D.; Yuan, X.; Xiong, Y.; Chen, B.; Wang, Y.; Niu, X.; Tian, R.; Huang, H. USP7 Deubiquitinates KRAS and Promotes Non-Small Cell Lung Cancer. Cell Rep. 2024, 43, 114917. https://doi.org/10.1016/j.celrep.2024.114917.
- 73.
Dai, X.; Lu, L.; Deng, S.; Meng, J.; Wan, C.; Huang, J.; Sun, Y.; Hu, Y.; Wu, B.; Wu, G.; et al. USP7 Targeting Modulates Anti-Tumor Immune Response by Reprogramming Tumor-Associated Macrophages in Lung Cancer. Theranostics 2020, 10, 9332–9347. https://doi.org/10.7150/thno.47137.
- 74.
Hu, H.; Zhao, K.; Fang, D.; Wang, Z.; Yu, N.; Yao, B.; Liu, K.; Wang, F.; Mei, Y. The RNA Binding Protein RALY Suppresses P53 Activity and Promotes Lung Tumorigenesis. Cell Rep. 2023, 42, 112288. https://doi.org/10.1016/j.celrep.2023.112288.
- 75.
Chen, S.T.; Okada, M.; Nakato, R.; Izumi, K.; Bando, M.; Shirahige, K. The Deubiquitinating Enzyme USP7 Regulates Androgen Receptor Activity by Modulating Its Binding to Chromatin. J. Biol. Chem. 2015, 290, 21713–21723. https://doi.org/10.1074/jbc.M114.628255.
- 76.
Morra, F.; Merolla, F.; Napolitano, V.; Ilardi, G.; Miro, C.; Paladino, S.; Staibano, S.; Cerrato, A.; Celetti, A. The Combined Effect of USP7 Inhibitors and PARP Inhibitors in Hormone-Sensitive and Castration-Resistant Prostate Cancer Cells. Oncotarget 2017, 8, 31815–31829. https://doi.org/10.18632/oncotarget.16463.
- 77.
Gao, N.; Ishii, K.; Mirosevich, J.; Kuwajima, S.; Oppenheimer, S.R.; Roberts, R.L.; Jiang, M.; Yu, X.; Shappell, S.B.; Caprioli, R.M.; et al. Forkhead Box A1 Regulates Prostate Ductal Morphogenesis and Promotes Epithelial Cell Maturation. Development 2005, 132, 3431–3443. https://doi.org/10.1242/dev.01917.
- 78.
Xu, B.; Song, B.; Lu, X.; Kim, J.; Hu, M.; Zhao, J.C.; Yu, J. Altered Chromatin Recruitment by FOXA1 Mutations Promotes Androgen Independence and Prostate Cancer Progression. Cell Res. 2019, 29, 773–775. https://doi.org/10.1038/s41422-019-0204-1.
- 79.
Park, S.H.; Fong, K.; Kim, J.; Wang, F.; Lu, X.; Lee, Y.; Brea, L.T.; Wadosky, K.; Guo, C.; Abdulkadir, S.A.; et al. Posttranslational Regulation of FOXA1 by Polycomb and BUB3/USP7 Deubiquitin Complex in Prostate Cancer. Sci. Adv. 2021, 7, eabe2261. https://doi.org/10.1126/sciadv.abe2261.
- 80.
Ersvær, E.; Kildal, W.; Vlatkovic, L.; Cyll, K.; Pradhan, M.; Kleppe, A.; Hveem, T.S.; Askautrud, H.A.; Novelli, M.; Wæhre, H.; et al. Prognostic Value of Mitotic Checkpoint Protein BUB3, Cyclin B1, and Pituitary Tumor-Transforming 1 Expression in Prostate Cancer. Mod. Pathol. 2020, 33, 905–915. https://doi.org/10.1038/s41379-019-0418-2.
- 81.
Song, M.S.; Salmena, L.; Carracedo, A.; Egia, A.; Lo-Coco, F.; Teruya-Feldstein, J.; Pandolfi, P.P. The Deubiquitinylation and Localization of PTEN Are Regulated by a HAUSP–PML Network. Nature 2008, 455, 813–817. https://doi.org/10.1038/nature07290.
- 82.
Zhang, Q.; Cao, C.; Gong, W.; Bao, K.; Wang, Q.; Wang, Y.; Bi, L.; Ma, S.; Zhao, J.; Liu, L.; et al. A Feedforward Circuit Shaped by ECT2 and USP7 Contributes to Breast Carcinogenesis. Theranostics 2020, 10, 10769–10790. https://doi.org/10.7150/thno.46878.
- 83.
He, J.; Li, C.F.; Lee, H.J.; Shin, D.H.; Chern, Y.J.; Carvalho, B.P.D.; Chan, C.H. MIG-6 Is Essential for Promoting Glucose Metabolic Reprogramming and Tumor Growth in Triple-negative Breast Cancer. EMBO Rep. 2021, 22, e50781. https://doi.org/10.15252/embr.202050781.
- 84.
Yi, J.; Li, H.; Chu, B.; Kon, N.; Hu, X.; Hu, J.; Xiong, Y.; Kaniskan, H.U.; Jin, J.; Gu, W. Inhibition of USP7 Induces P53-Independent Tumor Growth Suppression in Triple-Negative Breast Cancers by Destabilizing FOXM1. Cell Death Differ. 2023, 30, 1799–1810. https://doi.org/10.1038/s41418-023-01180-7.
- 85.
Zhu, Y.; Gu, L.; Lin, X.; Cui, K.; Liu, C.; Lu, B.; Zhou, F.; Zhao, Q.; Shen, H.; Li, Y. LINC00265 Promotes Colorectal Tumorigenesis via ZMIZ2 and USP7-Mediated Stabilization of β-Catenin. Cell Death Differ. 2020, 27, 1316–1327. https://doi.org/10.1038/s41418-019-0417-3.
- 86.
Jiang, L.; Xiong, J.; Zhan, J.; Yuan, F.; Tang, M.; Zhang, C.; Cao, Z.; Chen, Y.; Lu, X.; Li, Y.; et al. Ubiquitin-Specific Peptidase 7 (USP7)-Mediated Deubiquitination of the Histone Deacetylase SIRT7 Regulates Gluconeogenesis. J. Biol. Chem. 2017, 292, 13296–13311. https://doi.org/10.1074/jbc.M117.780130.
- 87.
Yan, M.; Su, L.; Wu, K.; Mei, Y.; Liu, Z.; Chen, Y.; Zeng, W.; Xiao, Y.; Zhang, J.; Cai, G.; et al. USP7 Promotes Cardiometabolic Disorders and Mitochondrial Homeostasis Dysfunction in Diabetic Mice via Stabilizing PGC1β. Pharmacol. Res. 2024, 205, 107235. https://doi.org/10.1016/j.phrs.2024.107235.
- 88.
Ni, W.; Lin, S.; Bian, S.; Zheng, W.; Qu, L.; Fan, Y.; Lu, C.; Xiao, M.; Zhou, P. USP7 Mediates Pathological Hepatic de Novo Lipogenesis through Promoting Stabilization and Transcription of ZNF638. Cell Death Dis. 2020, 11, 1–17. https://doi.org/10.1038/s41419-020-03075-8.
- 89.
Zhang, Y.; Zhang, Y. Knockdown of USP7 Alleviates Atherosclerosis in ApoE-Deficient Mice by Regulating EZH2 Expression. Open Life Sci. 2024, 19, 20220929. https://doi.org/10.1515/biol-2022-0929.
- 90.
Prusiner, S.B. A Unifying Role for Prions in Neurodegenerative Diseases. Science 2012, 336, 1511–1513. https://doi.org/10.1126/science.1222951.
- 91.
Wilson, D.M.; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of Neurodegenerative Diseases. Cell 2023, 186, 693–714. https://doi.org/10.1016/j.cell.2022.12.032.
- 92.
Zhang, T.; Periz, G.; Lu, Y.N.; Wang, J. USP7 Regulates ALS-Associated Proteotoxicity and Quality Control through the NEDD4L–SMAD Pathway. Proc. Natl. Acad. Sci. USA 2020, 117, 28114–28125. https://doi.org/10.1073/pnas.2014349117.
- 93.
Kim, J.; de Haro, M.; Al-Ramahi, I.; Garaicoechea, L.L.; Jeong, H.H.; Sonn, J.Y.; Tadros, B.; Liu, Z.; Botas, J.; Zoghbi, H.Y. Evolutionarily Conserved Regulators of Tau Identify Targets for New Therapies. Neuron 2023, 111, 824–838.e7. https://doi.org/10.1016/j.neuron.2022.12.012.
- 94.
Hao, Y.H.; Doyle, J.M.; Ramanathan, S.; Gomez, T.S.; Jia, D.; Xu, M.; Chen, Z.J.; Billadeau, D.D.; Rosen, M.K.; Potts, P.R. Regulation of WASH-Dependent Actin Polymerization and Protein Trafficking by Ubiquitination. Cell 2013, 152, 1051–1064. https://doi.org/10.1016/j.cell.2013.01.051.
- 95.
Fountain, M.D.; Oleson, D.S.; Rech, M.E.; Segebrecht, L.; Hunter, J.V.; McCarthy, J.M.; Lupo, P.J.; Holtgrewe, M.; Moran, R.; Rosenfeld, J.A.; et al. Pathogenic Variants in USP7 Cause a Neurodevelopmental Disorder with Speech Delays, Altered Behavior, and Neurologic Anomalies. Genet. Med. 2019, 21, 1797–1807. https://doi.org/10.1038/s41436-019-0433-1.
- 96.
Zampieri, N.; Pulvirenti, R.; Pedrazzoli, E.; Camoglio, F.S. Hao-Fountain Syndrome and Genital Disorders: Report of a New Possible Association. Ital. J. Pediatr. 2022, 48, 182. https://doi.org/10.1186/s13052-022-01367-7.
- 97.
Capra, A.P.; Agolini, E.; La Rosa, M.A.; Novelli, A.; Briuglia, S. Correspondence on “Pathogenic Variants in USP7 Cause a Neurodevelopmental Disorder with Speech Delays, Altered Behavior, and Neurologic Anomalies” by Fountain et al. Genet. Med. 2021, 23, 421–422. https://doi.org/10.1038/s41436-020-00978-x.
- 98.
van der Laan, L.; Karimi, K.; Rooney, K.; Lauffer, P.; McConkey, H.; Caro, P.; Relator, R.; Levy, M.A.; Bhai, P.; Mignot, C.; et al. DNA Methylation Episignature, Extension of the Clinical Features, and Comparative Epigenomic Profiling of Hao-Fountain Syndrome Caused by Variants in USP7. Genet. Med. 2024, 26, 101050. https://doi.org/10.1016/j.gim.2023.101050.
- 99.
Wimmer, M.C.; Brennenstuhl, H.; Hirsch, S.; Dötsch, L.; Unser, S.; Caro, P.; Schaaf, C.P. Hao-Fountain Syndrome: 32 Novel Patients Reveal New Insights into the Clinical Spectrum. Clin. Genet. 2024, 105, 499–509. https://doi.org/10.1111/cge.14480.
- 100.
Chen, H.; Ferguson, C.J.; Mitchell, D.C.; Risch, I.; Titus, A.; Paulo, J.A.; Hwang, A.; Beck, L.K.; Lin, T.H.; Gu, W.; et al. The Hao-Fountain Syndrome Protein USP7 Regulates Neuronal Connectivity in the Brain via a Novel P53-Independent Ubiquitin Signaling Pathway. Cell Rep. 2025, 44, 115231. https://doi.org/10.1016/j.celrep.2025.115231.
- 101.
Colland, F.; Formstecher, E.; Jacq, X.; Reverdy, C.; Planquette, C.; Conrath, S.; Trouplin, V.; Bianchi, J.; Aushev, V.N.; Camonis, J.; et al. Small-Molecule Inhibitor of USP7/HAUSP Ubiquitin Protease Stabilizes and Activates P53 in Cells. Mol. Cancer Ther. 2009, 8, 2286–2295. https://doi.org/10.1158/1535-7163.MCT-09-0097.
- 102.
Colombo, M.; Vallese, S.; Peretto, I.; Jacq, X.; Rain, J.C.; Colland, F.; Guedat, P. Synthesis and Biological Evaluation of 9-Oxo-9H-Indeno[1,2-b]Pyrazine-2,3-Dicarbonitrile Analogues as Potential Inhibitors of Deubiquitinating Enzymes. ChemMedChem 2010, 5, 552–558. https://doi.org/10.1002/cmdc.200900409.
- 103.
Chi, L.; Wang, H.; Yu, F.; Gao, C.; Dai, H.; Si, X.; Liu, L.; Wang, Z.; Zheng, J.; Ke, Y.; et al. Recent Progress of Ubiquitin-Specific-Processing Protease 7 Inhibitors. Russ. J. Bioorganic Chem. 2023, 49, 198–219. https://doi.org/10.1134/S1068162023020073.
- 104.
Kategaya, L.; Di Lello, P.; Rougé, L.; Pastor, R.; Clark, K.R.; Drummond, J.; Kleinheinz, T.; Lin, E.; Upton, J.P.; Prakash, S.; et al. USP7 Small-Molecule Inhibitors Interfere with Ubiquitin Binding. Nature 2017, 550, 534–538. https://doi.org/10.1038/nature24006.
- 105.
Lamberto, I.; Liu, X.; Seo, H.S.; Schauer, N.J.; Iacob, R.E.; Hu, W.; Das, D.; Mikhailova, T.; Weisberg, E.L.; Engen, J.R.; et al. Structure-Guided Development of a Potent and Selective Non-Covalent Active-Site Inhibitor of USP7. Cell Chem. Biol. 2017, 24, 1490–1500.e11. https://doi.org/10.1016/j.chembiol.2017.09.003.
- 106.
Turnbull, A.P.; Ioannidis, S.; Krajewski, W.W.; Pinto-Fernandez, A.; Heride, C.; Martin, A.C.L.; Tonkin, L.M.; Townsend, E.C.; Buker, S.M.; Lancia, D.R.; et al. Molecular Basis of USP7 Inhibition by Selective Small-Molecule Inhibitors. Nature 2017, 550, 481–486. https://doi.org/10.1038/nature24451.
- 107.
Leger, P.R.; Hu, D.X.; Biannic, B.; Bui, M.; Han, X.; Karbarz, E.; Maung, J.; Okano, A.; Osipov, M.; Shibuya, G.M.; et al. Discovery of Potent, Selective, and Orally Bioavailable Inhibitors of USP7 with In Vivo Antitumor Activity. J. Med. Chem. 2020, 63, 5398–5420. https://doi.org/10.1021/acs.jmedchem.0c00245.
- 108.
O’Dowd, C.R.; Helm, M.D.; Rountree, J.S.S.; Flasz, J.T.; Arkoudis, E.; Miel, H.; Hewitt, P.R.; Jordan, L.; Barker, O.; Hughes, C.; et al. Identification and Structure-Guided Development of Pyrimidinone Based USP7 Inhibitors. ACS Med. Chem. Lett. 2018, 9, 238–243. https://doi.org/10.1021/acsmedchemlett.7b00512.
- 109.
Di Lello, P.; Pastor, R.; Murray, J.M.; Blake, R.A.; Cohen, F.; Crawford, T.D.; Drobnick, J.; Drummond, J.; Kategaya, L.; Kleinheinz, T.; et al. Discovery of Small-Molecule Inhibitors of Ubiquitin Specific Protease 7 (USP7) Using Integrated NMR and in Silico Techniques. J. Med. Chem. 2017, 60, 10056–10070. https://doi.org/10.1021/acs.jmedchem.7b01293.
- 110.
Vasas, A.; Ivanschitz, L.; Molnár, B.; Kiss, Á.; Baker, L.; Fiumana, A.; Macias, A.; Murray, J.B.; Sanders, E.; Whitehead, N.; et al. Structure-Guided Discovery of Selective USP7 Inhibitors with In Vivo Activity. J. Med. Chem. 2024, 67, 18993–19009. https://doi.org/10.1021/acs.jmedchem.4c01472.
- 111.
Gavory, G.; O’Dowd, C.R.; Helm, M.D.; Flasz, J.; Arkoudis, E.; Dossang, A.; Hughes, C.; Cassidy, E.; McClelland, K.; Odrzywol, E.; et al. Discovery and Characterization of Highly Potent and Selective Allosteric USP7 Inhibitors. Nat. Chem. Biol. 2018, 14, 118–125. https://doi.org/10.1038/nchembio.2528.
- 112.
Li, X.; Yang, S.; Zhang, H.; Liu, X.; Gao, Y.; Chen, Y.; Liu, L.; Wang, D.; Liang, Z.; Liu, S.; et al. Discovery of Orally Bioavailable N-Benzylpiperidinol Derivatives as Potent and Selective USP7 Inhibitors with In Vivo Antitumor Immunity Activity against Colon Cancer. J. Med. Chem. 2022, 65, 16622–16639. https://doi.org/10.1021/acs.jmedchem.2c01444.
- 113.
Ohol, Y.M.; Sun, M.T.; Cutler, G.; Leger, P.R.; Hu, D.X.; Biannic, B.; Rana, P.; Cho, C.; Jacobson, S.; Wong, S.T.; et al. Novel, Selective Inhibitors of USP7 Uncover Multiple Mechanisms of Antitumor Activity In Vitro and In Vivo. Mol. Cancer Ther. 2020, 19, 1970–1980. https://doi.org/10.1158/1535-7163.MCT-20-0184.
- 114.
Miao, Y.L.; Fan, F.; Cheng, Y.J.; Jia, L.; Song, S.S.; Huan, X.J.; Bao, X.B.; Ding, J.; Yu, X.; He, J.X. USP7 V517F Mutation as a Mechanism of Inhibitor Resistance. Nat. Commun. 2025, 16, 2526. https://doi.org/10.1038/s41467-025-56981-w.
- 115.
Cheng, Y.J.; Zhuang, Z.; Miao, Y.L.; Song, S.S.; Bao, X.B.; Yang, C.H.; He, J.X. Identification of YCH2823 as a Novel USP7 Inhibitor for Cancer Therapy. Biochem. Pharmacol. 2024, 222, 116071. https://doi.org/10.1016/j.bcp.2024.116071.
- 116.
Reverdy, C.; Conrath, S.; Lopez, R.; Planquette, C.; Atmanene, C.; Collura, V.; Harpon, J.; Battaglia, V.; Vivat, V.; Sippl, W.; et al. Discovery of Specific Inhibitors of Human USP7/HAUSP Deubiquitinating Enzyme. Chem. Biol. 2012, 19, 467–477. https://doi.org/10.1016/j.chembiol.2012.02.007.
- 117.
Chauhan, D.; Tian, Z.; Nicholson, B.; Kumar, K.G.S.; Zhou, B.; Carrasco, R.; McDermott, J.L.; Leach, C.A.; Fulcinniti, M.; Kodrasov, M.P.; et al. A Small Molecule Inhibitor of Ubiquitin-Specific Protease-7 Induces Apoptosis in Multiple Myeloma Cells and Overcomes Bortezomib Resistance. Cancer Cell 2012, 22, 345–358. https://doi.org/10.1016/j.ccr.2012.08.007.
- 118.
Carrà, G.; Panuzzo, C.; Torti, D.; Parvis, G.; Crivellaro, S.; Familiari, U.; Volante, M.; Morena, D.; Lingua, M.F.; Brancaccio, M.; et al. Therapeutic Inhibition of USP7-PTEN Network in Chronic Lymphocytic Leukemia: A Strategy to Overcome TP53 Mutated/Deleted Clones. Oncotarget 2017, 8, 35508–35522. https://doi.org/10.18632/oncotarget.16348.
- 119.
Goldenberg, S.J.; McDermott, J.L.; Butt, T.R.; Mattern, M.R.; Nicholson, B. Strategies for the Identification of Novel Inhibitors of Deubiquitinating Enzymes. Biochem. Soc. Trans. 2008, 36, 828–832. https://doi.org/10.1042/BST0360828.
- 120.
Nicholson, B.; Leach, C.A.; Goldenberg, S.J.; Francis, D.M.; Kodrasov, M.P.; Tian, X.; Shanks, J.; Sterner, D.E.; Bernal, A.; Mattern, M.R.; et al. Characterization of Ubiquitin and Ubiquitin-like-protein Isopeptidase Activities. Protein Sci. 2008, 17, 1035–1043. https://doi.org/10.1110/ps.083450408.
- 121.
Altun, M.; Kramer, H.B.; Willems, L.I.; McDermott, J.L.; Leach, C.A.; Goldenberg, S.J.; Kumar, K.G.S.; Konietzny, R.; Fischer, R.; Kogan, E.; et al. Activity-Based Chemical Proteomics Accelerates Inhibitor Development for Deubiquitylating Enzymes. Chem. Biol. 2011, 18, 1401–1412. https://doi.org/10.1016/j.chembiol.2011.08.018.
- 122.
Weinstock, J.; Wu, J.; Cao, P.; Kingsbury, W.D.; McDermott, J.L.; Kodrasov, M.P.; McKelvey, D.M.; Suresh Kumar, K.G.; Goldenberg, S.J.; Mattern, M.R.; et al. Selective Dual Inhibitors of the Cancer-Related Deubiquitylating Proteases USP7 and USP47. ACS Med. Chem. Lett. 2012, 3, 789–792. https://doi.org/10.1021/ml200276j.
- 123.
Fan, Y.H.; Cheng, J.; Vasudevan, S.A.; Dou, J.; Zhang, H.; Patel, R.H.; Ma, I.T.; Rojas, Y.; Zhao, Y.; Yu, Y.; et al. USP7 Inhibitor P22077 Inhibits Neuroblastoma Growth via Inducing P53-Mediated Apoptosis. Cell Death Dis. 2013, 4, e867. https://doi.org/10.1038/cddis.2013.400.
- 124.
Chen, C.; Song, J.; Wang, J.; Xu, C.; Chen, C.; Gu, W.; Sun, H.; Wen, X. Synthesis and Biological Evaluation of Thiazole Derivatives as Novel USP7 Inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 845–849. https://doi.org/10.1016/j.bmcl.2017.01.018.
- 125.
Li, M.; Liu, S.; Chen, H.; Zhou, X.; Zhou, J.; Zhou, S.; Yuan, H.; Xu, Q.L.; Liu, J.; Cheng, K.; et al. N-Benzylpiperidinol Derivatives as Novel USP7 Inhibitors: Structure–Activity Relationships and X-Ray Crystallographic studies. Eur. J. Med. Chem. 2020, 199, 112279. https://doi.org/10.1016/j.ejmech.2020.112279.
- 126.
Schauer, N.J.; Liu, X.; Magin, R.S.; Doherty, L.M.; Chan, W.C.; Ficarro, S.B.; Hu, W.; Roberts, R.M.; Iacob, R.E.; Stolte, B.; et al. Selective USP7 Inhibition Elicits Cancer Cell Killing through a P53-Dependent Mechanism. Sci. Rep. 2020, 10, 5324. https://doi.org/10.1038/s41598-020-62076-x.
- 127.
Yamaguchi, M.; Miyazaki, M.; Kodrasov, M.P.; Rotinsulu, H.; Losung, F.; Mangindaan, R.E.P.; de Voogd, N.J.; Yokosawa, H.; Nicholson, B.; Tsukamoto, S. Spongiacidin C, a Pyrrole Alkaloid from the Marine Sponge Stylissa Massa, Functions as a USP7 Inhibitor. Bioorg. Med. Chem. Lett. 2013, 23, 3884–3886. https://doi.org/10.1016/j.bmcl.2013.04.066.
- 128.
Jing, B.; Liu, M.; Yang, L.; Cai, H.; Chen, J.; Li, Z.; Kou, X.; Wu, Y.; Qin, D.; Zhou, L.; et al. Characterization of Naturally Occurring Pentacyclic Triterpenes as Novel Inhibitors of Deubiquitinating Protease USP7 with Anticancer Activity in Vitro. Acta Pharmacol. Sin. 2018, 39, 492–498. https://doi.org/10.1038/aps.2017.119.
- 129.
Valeur, E.; Guéret, S.M.; Adihou, H.; Gopalakrishnan, R.; Lemurell, M.; Waldmann, H.; Grossmann, T.N.; Plowright, A.T. New Modalities for Challenging Targets in Drug Discovery. Angew. Chem. Int. Ed. 2017, 56, 10294–10323. https://doi.org/10.1002/anie.201611914.
- 130.
Paiva, S.L.; Crews, C.M. Targeted Protein Degradation: Elements of PROTAC design. Curr. Opin. Chem. Biol. 2019, 50, 111–119. https://doi.org/10.1016/j.cbpa.2019.02.022.
- 131.
Pei, Y.; Fu, J.; Shi, Y.; Zhang, M.; Luo, G.; Luo, X.; Song, N.; Mi, T.; Yang, Y.; Li, J.; et al. Discovery of a Potent and Selective Degrader for USP7. Angew Chem. Int. Ed. Engl. 2022, 61, e202204395. https://doi.org/10.1002/anie.202204395.
- 132.
Murgai, A.; Sosič, I.; Gobec, M.; Lemnitzer, P.; Proj, M.; Wittenburg, S.; Voget, R.; Gütschow, M.; Krönke, J.; Steinebach, C. Targeting the Deubiquitinase USP7 for Degradation with PROTACs. Chem. Commun. 2022, 58, 8858–8861. https://doi.org/10.1039/D2CC02094G.
- 133.
Chauhan, D.; Tian, Z.; Nicholson, B.; Zhou, B.; Hideshima, T.; Munshi, N.; Richardson, P.; Anderson, K.C. Deubiquitylating Enzyme USP-7, a Novel Therapeutic Target in Multiple Myeloma. Blood 2009, 114, 610. https://doi.org/10.1182/blood.V114.22.610.610.
- 134.
Teleanu, D.M.; Negut, I.; Grumezescu, V.; Grumezescu, A.M.; Teleanu, R.I. Nanomaterials for Drug Delivery to the Central Nervous System. Nanomaterials 2019, 9, 371. https://doi.org/10.3390/nano9030371.
- 135.
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2.
- 136.
Wang, L.; Wen, Z.; Liu, S.W.; Zhang, L.; Finley, C.; Lee, H.J.; Fan, H.J.S. Overview of AlphaFold2 and Breakthroughs in Overcoming Its Limitations. Comput. Biol. Med. 2024, 176, 108620. https://doi.org/10.1016/j.compbiomed.2024.108620.
- 137.
Henning, N.J.; Boike, L.; Spradlin, J.N.; Ward, C.C.; Liu, G.; Zhang, E.; Belcher, B.P.; Brittain, S.M.; Hesse, M.J.; Dovala, D.; et al. Deubiquitinase-Targeting Chimeras for Targeted Protein Stabilization. Nat. Chem. Biol. 2022, 18, 412–421. https://doi.org/10.1038/s41589-022-00971-2.
- 138.
Liu, J.; Hu, X.; Luo, K.; Xiong, Y.; Chen, L.; Wang, Z.; Inuzuka, H.; Qian, C.; Yu, X.; Xie, L.; et al. USP7-Based Deubiquitinase-Targeting Chimeras Stabilize AMPK. J. Am. Chem. Soc. 2024, 146, 11507–11514. https://doi.org/10.1021/jacs.4c02373.